已知:點D是等邊△ABC邊上任意一點,∠ABD=∠ACE,BD=CE.
(1)說明△ABD≌△ACE的理由;  
(2)△ADE是什么三角形?為什么?
分析:(1)根據(jù)全等三角形的判定定理SAS證得△ABD≌△ACE;  
(2)利用(1)中的全等三角形的對應(yīng)邊相等判定AD=AE,則△ADE是等腰三角形.
解答:(1)證明:如圖,∵△ABC是等邊三角形,
∴AB=AC.
在△ABD與△ACE中,
AB=AC
∠ABD=∠ACE
BD=CE
,
∴△ABD≌△ACE(SAS);

(2)解:△ADE是等腰三角形.理由如下:
∵由(1)知△ABD≌△ACE,
∴AD=AE,∴△ADE是等腰三角形.
點評:本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定以及等邊三角形的性質(zhì).全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•金山區(qū)一模)如圖,已知:點P是等邊△ABC的重心,PD=2,那么AB=
4
3
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:點P是等邊△ABC內(nèi)任意一點,它到三邊的距離分別為h1、h2、h3,且滿足h1+h2+h3=6,則S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)【老題重現(xiàn)】
求證:等腰三角形底邊上任意一點到兩腰的距離和等于一腰上的高.
已知:△ABC中,AB=AC,點P是BC邊上任意一點,PE⊥AB于E,PF⊥AC于F,CD是AB邊上的高線.
求證:PE+PF=CD
證明:連接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【變式應(yīng)用】
請利用“類比”和“化歸”兩種方法解答下面問題:
求證:等邊三角形內(nèi)上任意一點到三邊的距離和等于一邊上的高.
已知:點P是等邊△ABC內(nèi)任意一點,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC邊上的高線.精英家教網(wǎng)
求證:PD+PE+PF=AH
證明:
方法(一)類比:通過類比上題的思路和方法,模仿上題的“面積法”解決本題.
連接AP,BP,CP
方法(二)化歸:如圖,通過MN在等邊△ABC中構(gòu)造符合“老題”規(guī)律的等邊△AMN,化“新題”為“老題”,直接利用“老題重現(xiàn)”的結(jié)論解決問題.
過點P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提煉運用】
已知:點P是等邊△ABC內(nèi)任意一點,設(shè)到三邊的距離分別為a、b、c,且使得以a、b、c為邊能夠構(gòu)成三角形.
請在圖中畫出滿足條件的點P一切可能的位置,并對這些位置加以說明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

求證:等腰三角形底邊上任意一點到兩腰的距離和等于一腰上的高.
已知:△ABC中,AB=AC,點P是BC邊上任意一點,PE⊥AB于E,PF⊥AC于F,CD是AB邊上的高線.
求證:PE+PF=CD
證明:連接AP,
∵S△ABP+S△ACP=S△ABC
數(shù)學(xué)公式
∵AB=AC
∴PE+PF=CD

【變式應(yīng)用】
請利用“類比”和“化歸”兩種方法解答下面問題:
求證:等邊三角形內(nèi)上任意一點到三邊的距離和等于一邊上的高.
已知:點P是等邊△ABC內(nèi)任意一點,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC邊上的高線.
求證:PD+PE+PF=AH
證明:
方法(一)類比:通過類比上題的思路和方法,模仿上題的“面積法”解決本題.
連接AP,BP,CP
方法(二)化歸:如圖,通過MN在等邊△ABC中構(gòu)造符合“老題”規(guī)律的等邊△AMN,化“新題”為“老題”,直接利用“老題重現(xiàn)”的結(jié)論解決問題.
過點P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提煉運用】
已知:點P是等邊△ABC內(nèi)任意一點,設(shè)到三邊的距離分別為a、b、c,且使得以a、b、c為邊能夠構(gòu)成三角形.
請在圖中畫出滿足條件的點P一切可能的位置,并對這些位置加以說明.

查看答案和解析>>

同步練習(xí)冊答案