(1)如圖一,等邊△ABC中,D是AB上的動(dòng)點(diǎn),以CD為一邊,向上作等邊△EDC,連結(jié)AE。求證:AE//BC;

(2)如圖二,將(1)中等邊△ABC的形狀改成以BC為底邊的等腰三角形。所作△EDC改成相似于△ABC。請(qǐng)問:是否仍有AE//BC?證明你的結(jié)論。

              

 

 

 

 

【答案】

(1)見解析(2)見解析

【解析】

(1)根據(jù)△ABC與△EDC是等邊三角形,利用其三邊相等和三角相等的關(guān)系,求證∠BCD=∠ACE.即可證明ACE≌△BCD,即可得∠ABC=∠CAE=60°,利用等量代換求證∠CAE=∠ACB即可.

(2)通過△EDC與△ABC相似,求得,可得△ACE與△BCD相似,得出∠EAC=∠B,通過AB=AC,即可求得結(jié)論

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)如圖一,等邊三角形MNP的邊長為1,線段AB的長為4,點(diǎn)M與A重合,點(diǎn)N在線段AB上.△MNP沿線段AB按A→B的方向滾動(dòng),直至△MNP中有一個(gè)點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過的路程為
 
;
(2)如圖三,正方形MNPQ的邊長為1,正方形ABCD的邊長為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線段AB上,點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按A→B→C→D→A→…的方向滾動(dòng),始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止,則點(diǎn)P經(jīng)過的最短路程為
 

精英家教網(wǎng)
(注:以△MNP為例,△MNP沿線段AB按A→B的方向滾動(dòng)指的是先以頂點(diǎn)N為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線段AB上時(shí),再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).多邊形沿直線滾動(dòng)與此類似.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1) 如圖一,等邊三角形MNP的邊長為1,線段AB的長為4,點(diǎn)MA重合,點(diǎn)N在線段AB上. △MNP沿線段AB的方向滾動(dòng), 直至△MNP中有一個(gè)點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過的路程為           ;(2)如圖二,正方形MNPQ的邊長為1,正方形ABCD的邊長為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線段AB上, 點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按的方向滾動(dòng),始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止, 則點(diǎn)P經(jīng)過的最短路程為           .

(注:以△MNP為例,△MNP沿線段AB的方向滾動(dòng)指的是先以頂點(diǎn)N為中心
順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線段AB上時(shí), 再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù). 多邊形沿直線滾動(dòng)與此類似.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(帶解析) 題型:解答題

(1)如圖一,等邊△ABC中,D是AB上的動(dòng)點(diǎn),以CD為一邊,向上作等邊△EDC,連結(jié)AE。求證:AE//BC;
(2)如圖二,將(1)中等邊△ABC的形狀改成以BC為底邊的等腰三角形。所作△EDC改成相似于△ABC。請(qǐng)問:是否仍有AE//BC?證明你的結(jié)論。
              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省臺(tái)州六校九年級(jí)上學(xué)期第二次聯(lián)考數(shù)學(xué)卷(解析版) 題型:填空題

 (1) 如圖一,等邊三角形MNP的邊長為1,線段AB的長為4,點(diǎn)MA重合,點(diǎn)N在線段AB上. △MNP沿線段AB的方向滾動(dòng), 直至△MNP中有一個(gè)點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過的路程為            ;(2)如圖二,正方形MNPQ的邊長為1,正方形ABCD的邊長為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線段AB上, 點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按的方向滾動(dòng),始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止, 則點(diǎn)P經(jīng)過的最短路程為            .

 

(注:以△MNP為例,△MNP沿線段AB的方向滾動(dòng)指的是先以頂點(diǎn)N為中心

順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線段AB上時(shí), 再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù). 多邊形沿直線滾動(dòng)與此類似.)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案