【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
【答案】(1)詳見解析;(2)①詳見解析;②2;③.
【解析】
(1)只要證明△BAE≌△CDE即可;
(2)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;
②構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;
③如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=2m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.
(1)證明:如圖1中,
∵四邊形ABCD是矩形,
∴AB=DC,∠A=∠D=90°,
∵E是AD中點(diǎn),
∴AE=DE,
∴△BAE≌△CDE,
∴BE=CE.
(2)①解:如圖2中,
由(1)可知,△EBC是等腰直角三角形,
∴∠EBC=∠ECB=45°,
∵∠ABC=∠BCD=90°,
∴∠EBM=∠ECN=45°,
∵∠MEN=∠BEC=90°,
∴∠BEM=∠CEN,
∵EB=EC,
∴△BEM≌△CEN;
②∵△BEM≌△CEN,
∴BM=CN,設(shè)BM=CN=x,則BN=4-x,
∴S△BMN=x(4-x)=-(x-2)2+2,
∵-<0,
∴x=2時(shí),△BMN的面積最大,最大值為2.
③解:如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=2m,BN=EN=m,EB=m.
∴EG=m+m=(1+)m,
∵S△BEG=EGBN=BGEH,
∴EH==m,
在Rt△EBH中,sin∠EBH=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),的最小值為0;.當(dāng)時(shí)有;且對于任意實(shí)數(shù),.
(1)的對稱軸為_________,頂點(diǎn)坐標(biāo)為_____________;
(2)當(dāng)時(shí),求的值;
(3)令,試求實(shí)數(shù),使得實(shí)數(shù)最大,當(dāng)時(shí)成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四 邊形OABC是矩形,點(diǎn)A、C在坐標(biāo)軸上,△ODE是由△OCB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,點(diǎn)D在X軸上,直線BD交Y軸于點(diǎn)F,交OE于點(diǎn)H,線段BC、OC的長是方程x2-6x+8=0的兩個(gè)根,且OC>BC.
(1)求直線BD的解析式.
(2)求 △OFH的面積.
(3)點(diǎn)M在坐標(biāo)軸上,平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)D、F、M、N為頂點(diǎn)的四邊形是矩形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸、軸分別交于、兩點(diǎn),拋物線經(jīng)過、兩點(diǎn),與軸的另一個(gè)交點(diǎn)為,且.
(1)求拋物線的解析式;
(2)點(diǎn)在上,點(diǎn)在的延長線上,且,連接交于點(diǎn),點(diǎn)為第一象限內(nèi)的一點(diǎn),當(dāng)是以為斜邊的等腰直角三角形時(shí),連接,設(shè)的長度為,的面積為,請用含的式子表示,并寫出自變量的取值范圍;
(3)在(2)的條件下,連接、,將沿翻折到的位置(與對應(yīng)),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤為400元,B型電腦每臺(tái)的利潤為500元.該商店計(jì)劃再一次性購進(jìn)兩種型號的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大,最大利潤是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,取格點(diǎn)A、B、C并連接AB,BC.取格點(diǎn)D、E并連接,交AB于點(diǎn)F.
(Ⅰ)AB的長等于_____;
(Ⅱ)若點(diǎn)G在線段BC上,且滿足AF+CG=FG,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,確定點(diǎn)G的位置,并簡要說明點(diǎn)G的位置是如何找到的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,△ABC 中,AC=BC,∠ACB=90°.請用直角三角尺(僅可畫直角或直線)在圖中畫出一個(gè)點(diǎn)P,使得∠APB=45°;
(2)如圖2,△ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出一個(gè)點(diǎn)Q,使點(diǎn)Q與點(diǎn)C在AB同側(cè),QA=QB,∠AQB=;(不寫作法,保留作圖痕跡)
(3)如圖3,若 AC=BC=,∠ACB=90°,以點(diǎn)A為原點(diǎn),直線AB 為 x 軸,過點(diǎn)A垂直于AB的直線為 y 軸,建立平面直角坐標(biāo)系,直線y= - x+b(b>0)交 x 軸于點(diǎn)M,交 y 軸于點(diǎn)N.當(dāng)點(diǎn)P在直線MN上,且∠APB=45°,求點(diǎn)P的個(gè)數(shù)及對應(yīng)的b的取值范圍;
(4)如圖4,△ABC 中,AB=a,∠ACB=,請用直尺和圓規(guī)作出點(diǎn)P,使得∠APB=且AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù),回答下列問題:
(1)求出此拋物線的對稱軸和頂點(diǎn)坐標(biāo);
(2)寫出拋物線與軸交點(diǎn)、的坐標(biāo),與軸的交點(diǎn)的坐標(biāo);
(3)寫出函數(shù)的最值和增減性;
(4)取何值時(shí),①,②.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com