【題目】如圖,在平面直角坐標系中,已知 ABC的三個頂點的坐標分別為A(-1,1), B(-3,1),C(-1,4).

①畫出ABC關于y軸對稱的A1B1C1;

②將ABC繞著點B順時針旋轉90°后得到A2BC2 , 請在圖中畫出A2BC2并求出線段BC旋轉過程中所掃過的面積(結果保留

【答案】①畫圖見解析;②畫圖見解析,

【解析】

①根據(jù)題意畫出ABC關于y軸對稱的A1B1C1即可;

②根據(jù)題意畫出ABC繞著點B順時針旋轉90°后得到A2BC2,線段BC旋轉過程中掃過的面積為扇形BCC2的面積,求出即可.

解:①△A1B1C1如圖所示;

②△A2BC2如圖所示,

BC=

∴線段BC旋轉過程中所掃過得面積S=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,點A、Bx軸上、點Cy軸上,點AB、C的坐標分別為A,0),B(3,0),C(0,5),點D在第一象限內,且∠ADB=60°,則線段CD長的最小值為( 。

A. 2 B. 2﹣2 C. 4 D. 2﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,∠BAC30°,D為角平分線上一點,DEACE,DFAC,且交AB于點F

1)求證:△AFD為等腰三角形;

2)若DF10cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店將進價為100元的某商品按120元的價格出售,可賣出300個;若商店在120元的基礎上每漲價1元,就要少賣10個,而每降價1元,就可多賣30個.

(1)求所獲利潤y (元)與售價x(元)之間的函數(shù)關系式;

(2)為獲利最大,商店應將價格定為多少元?

(3)為了讓利顧客,且獲利最大,商店應將價格定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經過A(3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.

(1)求該拋物線的解析式;

(2)若點P是該拋物線對稱軸l上的一個動點,求PBC周長的最小值;

(3)如圖(2),若E是線段AD上的一個動點( E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設點E的橫坐標為m,ADF的面積為S.

求S與m的函數(shù)關系式;

S是否存在最大值?若存在,求出最大值及此時點E的坐標; 若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:(1)畫的外角,再畫的平分線.(尺規(guī)作圖)

2)若,請完成下面的證明:

已知:中,是外角的平分線.

求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個池塘,其底面是邊長為10尺的正方形,一個蘆葦AB生長在它的中央,高出水面部分BC1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B.則這根蘆葦?shù)拈L度是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

同步練習冊答案