分析 (1)先根據(jù)三角函數(shù)的定義求出∠ABC的度數(shù),再根據(jù)旋轉(zhuǎn)的性質(zhì)得OA=O′A′,BO=BO′,BA′=BA=2,∠OBO′=∠ABA′=60°,∠BO′A′=∠BOA=120°,則∠CBA′=∠CBA+∠ABA′=90°;
(2)先判斷△BOO′為等邊三角形,所以O(shè)O′=BO,∠BOO′=∠BO′O=60°,再證明點(diǎn)C、O、O′、A′共線,從而得到A′C=OC+OB+OA,然后利用勾股定理計(jì)算A′C即可.
解答 解:(1)∵∠C=90°,AC=1,BC=$\sqrt{3}$,
∴tan∠ABC=$\frac{AC}{BC}$═$\frac{\sqrt{3}}{3}$,AB=2,
∴∠ABC=30°,
∵將△AOB繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°,得到△A′O′B(得到A、O的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′、O′),
∴OA=O′A′,BO=BO′,BA′=BA=2,∠OBO′=∠ABA′=60°,∠BO′A′=∠BOA=120°,
∴∠A′BC=∠CBA+∠ABA′=30°+60°=90°;
(2)∵BO=BO′,∠OBO′=∠ABA′=60°
∴△BOO′為等邊三角形,
∴OO′=BO,∠BOO′=∠BO′O=60°,
而∠BOC=120°,
∴∠COO′=∠BOC+∠BOO′=60°+120°=180°,
∴點(diǎn)O′在直線CO上,
同理可得點(diǎn)O、O′、A′共線,
∴A′C=OC+OO′+O′A′=OC+OB+OA,
∵∠CBA′=∠CBA+∠ABA′=30°+60°=90°,
∴A′C=$\sqrt{B{C}^{2}+BA{′}^{2}}$=$\sqrt{7}$,
即OA+OB+OC=$\sqrt{7}$.
故答案為90°,$\sqrt{7}$.
點(diǎn)評(píng) 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對(duì)應(yīng)角都相等都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對(duì)應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.解決(2)小題的關(guān)鍵是證明點(diǎn)C、O、O′、A′共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3cm | B. | 8cm | C. | 3cm或8cm | D. | 以上答案均不對(duì) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com