【題目】如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點(diǎn)E,連接DE.
(1)求證:四邊形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由;
(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,兩條對(duì)角線相交于點(diǎn)O,∠BAC的平分線交BD于點(diǎn)E,若正方形ABCD的周長(zhǎng)是16cm,則DE=____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,E是BC的中點(diǎn),∠BEA=∠DEA ,聯(lián)結(jié)AE、BD相交于點(diǎn)F,BD⊥CD.
(1)求證:AE=CD;
(2)求證:四邊形ABED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對(duì)應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′( )
(3)計(jì)算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.
(1)直接寫出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):_____;
(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩城相距800千米,一輛客車從甲城開往乙城,車速為千米/小時(shí),同時(shí)一輛出租車比乙城開往甲城,車速為90千米/小時(shí).
(1)設(shè)客車行駛時(shí)間為(小時(shí)),當(dāng)時(shí),客車與乙城的距離為_______千米(用含的代數(shù)式表示);
(2)已知,丙城在甲、乙兩城之間,且與甲城相距260千米.
①求客車與出租車相距200千米時(shí)客車的行駛時(shí)間;(列方程解答)
②已知客車和出租車在甲、乙之間的處相遇時(shí),出租車乘客小李突然接到開會(huì)通知,需要立即返回,此時(shí)小李有兩種返回乙城的方案;
方案一:繼續(xù)乘坐出租車到丙城,加油后立刻返回乙城,出租車加油的時(shí)間忽略不計(jì);
方案二:在處換乘客車返回乙城.
試通過計(jì)算,分析小李選擇哪種方案能更快到達(dá)乙城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù),且點(diǎn)在點(diǎn)的左側(cè),同時(shí)、滿足,.
(1)由題意:______,______,______;
(2)當(dāng)點(diǎn)在數(shù)軸上運(yùn)動(dòng)時(shí),點(diǎn)到、兩點(diǎn)距離之和的最小值為______.
(3)動(dòng)點(diǎn)、分別從點(diǎn)、沿?cái)?shù)軸負(fù)方向勻速運(yùn)動(dòng)同時(shí)出發(fā),點(diǎn)的速度是每秒個(gè)單位長(zhǎng)度,點(diǎn)的速度是每秒2個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,?
(4)在數(shù)軸上找一點(diǎn),使點(diǎn)到、、三點(diǎn)的距離之和等于10,請(qǐng)直接寫出所有的點(diǎn)對(duì)應(yīng)的數(shù).(不必說明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com