【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,D為AB邊上的動點,過點D作DE⊥AB交邊AC于點E,過點E作EF⊥DE交BC于點F,連接DF.
(1)當AD=4時,求EF的長度;
(2)求△DEF的面積的最大值;
(3)設O為DF的中點,隨著點D的運動,則點O的運動路徑的長度為______.
【答案】(1),(2)6,(3)
【解析】
(1)利用勾股定理可求出AB的長,根據(jù)∠A=∠A,∠EDA=∠C=90°可證明△AED∽△ABC,即可求出AE、CE的長,由∠EDA=∠DEF=90°可得EF//AB,即可證明△CEF∽△ACB,根據(jù)相似三角形的性質即可求出EF的長;(2)設AD=x.由△AED∽△ABC可得==,即可用x表示出DE、AE的長,進而可表示CE的長,由△CEF∽△ACB可得=,即可用x表示出EF的長,進而可用x表示出△DEF的面積,根據(jù)二次函數(shù)的性質即可求出△DEF的面積的最大值;(3)過C作CG⊥AB于G,當點D與A點重合時,點O為AB中點,當點D與點G重合時,點O為CG的中點,當點D在點G右邊時,DE與AC無交點,點O不存在,設AB中點為O1,CG的中點為O2,根據(jù)△ABC的面積可求出CG的長,即可得O2G的長,利用勾股定理可求出BG的長,即可得O1G的長,利用勾股定理求出O1O2的長即可.
(1)∵在Rt△ABC中,∠C=90°,
∴AB===10.
∵DE⊥AB,
∴∠EDA=90°.
∵∠A=∠A,∠EDA=∠C=90°,
∴△AED∽△ABC,
∴=.
∴AE=AB=5.
∴CE=AC-AE=8-5=3.
∵DE⊥AB,
∴∠DEF=90°.
∵∠EDA=∠DEF=90°,
∴EF∥AB.
∴△CEF∽△ACB,
∴=.
∴EF=·AB=.
(2)解:設AD=x.
∵△AED∽△ABC,
∴==.
∴DE=·BC=x,AE=·AB=x.
∴CE=AC-AE=8-x.
∵△CEF∽△ACB,
∴=.
∴EF=·AB=10-x.
∴S△DEF=DE·EF=-x2+x=-(x-)2+6.
∴當x=時,S△DEF取最大值為6.
因此,△DEF的面積的最大值為6.
(3)過C作CG⊥AB于G,
當點D與A點重合時,點O為AB中點,當點D與點G重合時,點O為CG的中點,當點D在點G右邊時,DE與AC無交點,點O不存在,設AB中點為O1,CG的中點為O2,
∴O1O2為點O的運動路徑的長度,
∵S△ABC=ACBC=ABCG,
∴CG===,
∴O2G=CG=,BG==,
∵AB=10,
∴O1B=5,
∴O1G= O1B-BG=,
∴O1O2===.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC邊上的高線長.
(2)點E為線段AB的中點,點F在邊AC上,連結EF,沿EF將△AEF折疊得到△PEF.
①如圖2,當點P落在BC上時,求∠AEP的度數(shù).
②如圖3,連結AP,當PF⊥AC時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】央視“經典詠流傳”開播以來受到社會廣泛關注,我市某校就“中華文化我傳承——地方戲曲進校園”的喜愛情況進行了隨機調查,對收集的信息進行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”
(1)被調查的總人數(shù)是________人,扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為______;
(2)補全條形統(tǒng)計圖;
(3)若該校共有學生1800人,請根據(jù)上述調查結果,估計該校學生中D類有______人;
(4)在抽取的A類5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學擔任兩角色,用樹形圖或列表法求出被抽到的兩個學生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統(tǒng)計同學們一個月閱讀課外書的數(shù)量,并繪制了如下的統(tǒng)計圖1和圖2,請根據(jù)圖中相關信息,解決下列問題:
(Ⅰ)圖1中的值為____________,共有____________名同學參與問卷調查;
(Ⅱ)求統(tǒng)計的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)全校共有學生1500人,根據(jù)樣本數(shù)據(jù),估計該校學生一個月閱讀2本課外書的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2020蓉漂云招聘活動在4月25日正式啟動,共發(fā)布了崗位13198個.某網絡公司招聘一名高級網絡工程師,應聘者小魏參加筆試和面試,成績(100分制)如表所示:
筆試 | 面試 | |||||||
成績 | 98 | 評委1 | 評委2 | 評委3 | 評委4 | 評委5 | 評委6 | 評委 7 |
94 | 95 | 92 | 99 | 98 | 97 | 96 |
其中規(guī)定:面試得分中去掉一個最高分和一個最低分,余下的面試得分的平均值作為應聘者的面試成績.
(1)請計算小魏的面試成績;
(2)如果面試成績與筆試成績按6:4的比例確定,請計算出小魏的最終成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)的圖象和性質進行了探究,探究過程如下,請補充完整.
(1)自變量的取值范圍是全體實數(shù),與的幾組對應值列表如下:
其中, .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質.
(4)直線經過,若關于的方程有個不相等的實數(shù)根,則的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校從甲、乙兩名班主任中選拔一名參加教育局組織的班主任技能比賽,選拔內容分案例分析、班會設計、情景問答三個項目,選拔比賽結束后,統(tǒng)計的這兩位班主任成績并制成了如圖所示的條形統(tǒng)計圖:
(1)乙班主任三個項目的成績中位數(shù)是______________________;
(2)用6張相同的卡片分別寫上甲、乙兩名班主任的六項成績,洗勻后,從中任意抽取一張,求抽到的卡片寫有“80”的概率;
(3)若按照圖2所示的權重比進行計算,選拔分數(shù)最高的一名班主任參加比賽,應確定哪名班主任獲得參賽資格,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明為探究函數(shù)的圖象和性質,需要畫出函數(shù)圖象,列表如下:
…… | …… | |||||||||||
…… | …… |
根據(jù)上表數(shù)據(jù),在平面直角坐標系中描點,畫出函數(shù)圖象,如圖如示,小明畫出了圖象的一部分.
(1)請你幫小明畫出完整的的圖象;
(2)觀察函數(shù)圖象,請寫出這個函數(shù)的兩條性質:
性質一: ;
性質二: .
(3)利用上述圖象,探究函數(shù)圖象與直線的關系;
①當 時, 直線與函數(shù)在第一象限的圖象有一個交點,則的坐標是 ;
②當為何值時,討論函數(shù)的圖象與直線的交點個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是( )
A.等腰梯形B.矩形C.菱形D.正方形
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com