【題目】如圖,平行四邊形ABCD的邊OAx軸上,將平行四邊形沿對角線AC對折,AO的對應(yīng)線段為AD,且點(diǎn)D,CO在同一條直線上,ADBC交于點(diǎn)E.

1)求證:△ABC≌△CDA.

2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.

【答案】1)證明見詳解;(2

【解析】

1)利用平行四邊形的性質(zhì)及折疊的性質(zhì),可得出CD=AB,∠DCA=BAC,結(jié)合AC=CA可證出△ABC≌△CDASAS);
2)由點(diǎn)D,CO在同一直線上可得出∠DCA=OCA=90°,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A的坐標(biāo)及OA的長度,由OCAB可得出直線OC的解析式為y=x,進(jìn)而可得出∠COA=45°,結(jié)合∠OCA=90°可得出△AOC為等腰直角三角形,利用等腰直角三角形的性質(zhì)可得出OC、AC的長,結(jié)合(1)的結(jié)論可得出四邊形ABDC為正方形,再利用正方形的面積公式結(jié)合SACE=S正方形ABDC可求出△ACE的面積.

1)證明:∵四邊形ABCO為平行四邊形,
AB=CO,ABOC,
∴∠BAC=OCA
由折疊可知:CD=CO,∠DCA=OCA
CD=AB,∠DCA=BAC
在△ABC和△CDA中,

,

∴△ABC≌△CDASAS).

2)解:∵∠DCA=OCA,點(diǎn)D,C,O在同一直線上,

∴∠DCA=OCA=90°.
當(dāng)y=0時(shí),x-6=0,解得:x=6,
∴點(diǎn)A的坐標(biāo)為(60),OA=6
OCAB
∴直線OC的解析式為y=x,
∴∠COA=45°,
∴△AOC為等腰直角三角形,
AC=OC=
ABCD,AB=CD=AC,∠DCA=90°,
∴四邊形ABDC為正方形,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時(shí)間(單位:)之間的關(guān)系如下表:

0

1

2

3

4

5

6

7

0

8

14

18

20

20

18

14

下列結(jié)論:足球距離地面的最大高度為;足球飛行路線的對稱軸是直線;足球被踢出時(shí)落地;足球被踢出時(shí),距離地面的高度是.

其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樹葉有關(guān)的問題

如圖,一片樹葉的長是指沿葉脈方向量出的最長部分的長度(不含葉柄),樹葉的寬是指沿與主葉脈垂直方向量出的最寬處的長度,樹葉的長寬比是指樹葉的長與樹葉的寬的比值。

某同學(xué)在校園內(nèi)隨機(jī)收集了A樹、B樹、C樹三棵的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x單位:cm)的數(shù)據(jù),計(jì)算長寬比,理如下:

1 A樹、B樹、C樹樹葉的長寬比統(tǒng)計(jì)表

1

2

3

4

5

6

7

8

9

10

A樹樹葉的長寬比

4.0

4.9

5.2

4.1

5.7

8.5

7.9

6.3

7.7

7.9

B樹樹葉的長寬比

2.5

2.4

2.2

2.3

2.0

1.9

2.3

2.0

1.9

2.0

C樹樹葉的長寬比

1.1

1.2

1.2

0.9

1.0

1.0

1.1

0.9

1.0

1.3

1 A樹、B樹、C樹樹葉的長寬比的平均數(shù)、中位數(shù)、眾數(shù)、方差統(tǒng)計(jì)表

平均數(shù)

中位數(shù)

眾數(shù)

方差

A樹樹葉的長寬比

6.2

6.0

7.9

2.5

B樹樹葉的長寬比

2.2

0.38

C樹樹葉的長寬比

1.1

1.1

1.0

0.02

A樹、B樹、C樹樹葉的長隨變化的情況

解決下列問題:

1)將表2補(bǔ)充完整;

2)①小張同學(xué)說:根據(jù)以上信息,我能判斷C樹樹葉的長、寬近似相等。

②小李同學(xué)說:從樹葉的長寬比的平均數(shù)來看,我認(rèn)為,下圖的樹葉是B樹的樹葉。

請你判斷上面兩位同學(xué)的說法中,誰的說法是合理的,誰的說法是不合理的,并給出你的理由;

3)現(xiàn)有一片長103cm,寬52cm的樹葉,請將該樹葉的數(shù)用表示在圖1中,判斷這片樹葉更可能來自于A、BC中的哪棵樹?并給出你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

1

2

3278x3)﹣46362x)﹣888721x)=0

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,PCD上一點(diǎn),且APBP分別平分∠DAB和∠CBA.

(1)求∠APB的度數(shù);

(2)如果AD=5 cm,AP=8 cm,求△APB的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個長為 ,寬為的長方形內(nèi),該長方形內(nèi)部未被卡片覆蓋的部分用陰影表示.

1)能否用只含的式子表示出圖②中兩塊陰影部分的周長和?_____(填不能);(2)若能,請你用只含的式子表示出中兩塊陰影部分的周長和;若不能,請說明理由_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于xy的方程組,則下列結(jié)論中正確的是_____

①當(dāng)a5時(shí),方程組的解是;

②當(dāng)x,y值互為相反數(shù)時(shí),a20;

③當(dāng)2x2y16時(shí),a18;

④不存在一個實(shí)數(shù)a使得xy

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:

類別

成本價(jià)(元/箱)

銷售價(jià)(元/箱)

25

35

35

48

求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1

2

3

4

5

6

7

8

9

10

查看答案和解析>>

同步練習(xí)冊答案