【題目】7張如圖的長為,寬為的小長方形紙片,按如圖的方式不重疊地放在矩形內(nèi),未被覆蓋的部分(兩個矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為,當(dāng)的長度變化時,則滿足(

A. B. C. D.

【答案】C

【解析】

表示出左上角與右下角部分的面積,求出之差,根據(jù)差與BC無關(guān)即可求出ab的關(guān)系式.

解:左上角陰影部分的長為AE,寬為AF=3b,右下角陰影部分的長為PC,寬為a
AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,
AE+a=4b+PC,即AE-PC=4b-a
∴陰影部分面積之差S=AEAF-PCCG=3bAE-aPC=3bPC+4b-a-aPC=3b-aPC+12b2-3ab,
3b-a=0,即a=3b
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與思考:

閱讀理解問題——代數(shù)問題幾何化 1.閱讀理解以下文字: 我們知道,多項(xiàng)式的因式分解就是將一個多項(xiàng)式化成幾個整 式的積的形式.通過因式分解,我們常常將一個次數(shù)比較高 的多項(xiàng)式轉(zhuǎn)化成幾個次數(shù)較低的整式的積,來達(dá)到降次化簡 的目的.這個思想可以引領(lǐng)我們解決很多相對復(fù)雜的代數(shù)問 題.

例如:方程 2x2+3x=0 就可以這樣來解:

解:原方程可化為 x2x+3=0,

所以x=0 或者 2x+3=0

解方程 2x+3=0,得 x=- ∴原方程的解為 x=0x=- .

根據(jù)你的理解,結(jié)合所學(xué)知識,解決以下問題:

1)解方程:3x2-x=0

2)解方程:(x+32-4x2=0;

3)已知ABC 的三邊長為 4,x,y,請你判斷代數(shù)式y2 -8y+16-x2的值的符號.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)P是三角形內(nèi)的任意一點(diǎn),PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為36,則PD+PE+PF=( )

A.12
B.8
C.4
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市對初二綜合素質(zhì)測評中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當(dāng)綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學(xué)的測試成績和平時成績兩項(xiàng)得分之和為185分,而綜合評價得分為91分,則孔明同學(xué)測試成績和平時成績各得多少分?
(2)某同學(xué)測試成績?yōu)?0分,他的綜合評價得分有可能達(dá)到A等嗎?為什么?
(3)如果一個同學(xué)綜合評價要達(dá)到A等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠BDC=EFD,∠AED=∠ACB

1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;

2)若D、E、F分別是ABAC、CD邊上的中點(diǎn),SDEF=4,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠BAC54°,∠BAC的平分線與AB的垂直平分線交于點(diǎn)O,將∠C沿EFEBC上,FAC上)折疊,點(diǎn)C與點(diǎn)O恰好重合,則∠OEC的度數(shù)是( 。

A. 106°B. 108°C. 110°D. 112°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,D為邊AC的中點(diǎn),AEECBDEC

1)求證:BDA≌△CEA;

2)請判斷ADE是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】花粉的質(zhì)量很小,一粒某種植物花粉的質(zhì)量約為0.000037毫克,已知1=1000毫克,那么0.000037毫克可用科學(xué)記數(shù)法表示為

A. 3.7×10﹣5 B. 3.7×10﹣6 C. 37×10﹣7 D. 3.7×10﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB,CD被直線AC所截,ABCD,E是平面內(nèi)任意一點(diǎn)(點(diǎn)E不在直線AB,CD,AC上),設(shè)∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度數(shù)可能是(

A. ①②③ B. ①②④C. ①③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案