如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm,點(diǎn)P從O點(diǎn)開始沿OA邊向點(diǎn)A以1cm/s的速度移動(dòng):點(diǎn)Q從點(diǎn)B開始沿BO邊向點(diǎn)O以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間(),那么:

(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當(dāng)△POQ的面積最大時(shí),△  POQ沿直線PQ翻折后得到△PCQ,試判斷點(diǎn)C是否落在直線AB上,并說明理由。
(1)y=-t2+3t(0≤t≤6);  (2) 點(diǎn)C不落在直線AB上.

試題分析:(1)根據(jù)P、Q的速度,用時(shí)間t表示出OQ和OP的長(zhǎng),即可通過三角形的面積公式得出y,t的函數(shù)關(guān)系式;
(2)先根據(jù)(1)的函數(shù)式求出y最大時(shí),x的值,即可得出OQ和OP的長(zhǎng),然后求出C點(diǎn)的坐標(biāo)和直線AB的解析式,將C點(diǎn)坐標(biāo)代入直線AB的解析式中即可判斷出C是否在AB上;
試題解析:(1)∵OA=12,OB=6由題意,得BQ=1·t=t,OP=1·t=t
∴OQ=6-t
∴y=×OP×OQ=·t(6-t)=-t2+3t(0≤t≤6)
(2)∵
∴當(dāng)有最大值時(shí),
∴OQ=3  OP=3即△POQ是等腰直角三角形。
把△POQ沿翻折后,可得四邊形是正方形
∴點(diǎn)C的坐標(biāo)是(3,3)

∴直線的解析式為當(dāng)時(shí),,
∴點(diǎn)C不落在直線AB上
考點(diǎn): 二次函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某職業(yè)學(xué)校三名學(xué)生到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
A:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
B:如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
C:通過調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為何值時(shí),該超市銷售這種水果每天獲取的利潤(rùn)達(dá)到600元?【利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))】
(3)一段時(shí)間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時(shí)該超市銷售這種水果每天獲取的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線y=2x2先沿x軸方向向左平移2個(gè)單位,再沿y軸方向向下平移3個(gè)單位,所得拋物線的解析式是 _________ 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=x+6交x軸于點(diǎn)A,交y軸于點(diǎn)C,經(jīng)過A和原點(diǎn)O的拋物線y=ax2+bx(a<0)的頂點(diǎn)B在直線AC上.

(1)求拋物線的函數(shù)關(guān)系式;
(2)以B點(diǎn)為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關(guān)系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動(dòng)點(diǎn),連結(jié)AE、OE,問在拋物線上是否存在一點(diǎn)M,使∠MOA︰∠AEO=2︰3,若存在,試求出點(diǎn)M的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左則,B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,―3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn)。

⑴求這個(gè)二次函數(shù)的表達(dá)式;
⑵連結(jié)PO、PC,在同一平面內(nèi)把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
⑶當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大,并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個(gè)二次函數(shù)的頂點(diǎn)A的坐標(biāo)為(1,0),且圖像經(jīng)過點(diǎn)B(2,3).
(1)求這個(gè)二次函數(shù)的解析式.
(2)設(shè)圖像與y軸的交點(diǎn)為C,記,試用表示(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有一個(gè)拋物線形拱橋,其橋拱的最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中,則此拋物線的函數(shù)關(guān)系式為___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=x2-(m-1)x+4的圖像與x軸有且只有一個(gè)交點(diǎn),則m的值為(  )
A.1或-3B.5或-3C.-5或3D.以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列關(guān)于拋物線的關(guān)系說法中,正確的是( )
A.它們的形狀相同,開口也相同;
B.它們都關(guān)于軸對(duì)稱;
C.它們的頂點(diǎn)不相同;
D.點(diǎn)(,)既在拋物線上也在

查看答案和解析>>

同步練習(xí)冊(cè)答案