【題目】如圖,在四邊形ABCD中,AC、BD是對(duì)角線,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,則線段BC的長是_____.
【答案】6
【解析】
作DE⊥AB,交BA的延長線于E,作CF⊥AB,可得DE=CF,且AC=AD,可證Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根據(jù)tan∠BAC=∠DAE=,可設(shè)DE=3a,AE=a,根據(jù)勾股定理可求a的值,由此可得BF,CF的值.再根據(jù)勾股定理求BC的長.
如圖:
作DE⊥AB,交BA的延長線于E,作CF⊥AB,
∵AB∥CD,DE⊥AB⊥,CF⊥AB
∴CF=DE,且AC=AD
∴Rt△ADE≌Rt△AFC
∴AE=AF,∠DAE=∠BAC
∵tan∠BAC=3
∴tan∠DAE=3
∴設(shè)AE=a,DE=3a
在Rt△BDE中,BD2=DE2+BE2
∴52=(4+a)2+27a2
解得a1=1,a2=-(不合題意舍去)
∴AE=1=AF,DE=3=CF
∴BF=AB-AF=3
在Rt△BFC中,BC==6
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP是∠ABC的平分線,AP⊥BP于P,連接PC,若△ABC的面積為1cm2則△PBC的面積為( ).
A. 0.4 cm2B. 0.5 cm2
C. 0.6 cm2D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 某校為加強(qiáng)學(xué)生安全意識(shí),組織了全校1500名學(xué)生參加安全知識(shí)競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)尚為完成的頻率和頻數(shù)分布直方圖,解答下列問題:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)這次抽取了______名學(xué)生的競賽成績進(jìn)行統(tǒng)計(jì),其中m=______,n=______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績?cè)?/span>70分以下(含70分)的學(xué)生為安全意識(shí)不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識(shí)不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個(gè)無蓋的長方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))
(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時(shí),裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長多大時(shí),總費(fèi)用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】笑笑將一副三角板按如圖所示的位置放置,△DOE的直角頂點(diǎn)O在邊BC的中點(diǎn)處,其中∠A=∠DOE=90°.∠B=45°,∠D=60°,△DOE繞點(diǎn)O自由旋轉(zhuǎn),且OD,OE分別交AB,AC于點(diǎn)M,N當(dāng)AN=4,NC=2時(shí),MN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+b與x軸交于點(diǎn)A,與y軸于點(diǎn)B,點(diǎn)C(﹣2,0)在線段OA上,且OC=OA.
(1)求b的值;
(2)點(diǎn)P是直線y=x+b上一動(dòng)點(diǎn),連接PC,PO,求PC+PO的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個(gè)全等的等腰直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合.現(xiàn)將三角板EFG繞O點(diǎn)順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分,已知AC=4.在旋轉(zhuǎn)過程中,下列結(jié)論:①BH=CK;②四邊形CHGK的面積等于4;③GK長度的最大值為2;④線段KH的長度最小值為2.其中正確的有( 。﹤(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,頂點(diǎn)A,C分別在x軸、y軸的正半軸上,拋物線y=-x2+bx+c經(jīng)過點(diǎn)B,C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC,BD,CD.
(1)求此拋物線的解析式;
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=50°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點(diǎn)F,若∠ABD:∠ACF=3:5,則∠BEC的度數(shù)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com