已知:如圖,在矩形ABCD中,點E在AD邊上,AE>DE,BE=BC,點O是線段CE的中點.
(1)試說明CE平分∠BED;
(2)在直線AD上是否存在點F,使得以B、C、F、E為頂點的四邊形是菱形?如果存在,試畫出點F的位置,并作適當(dāng)說明;如果不存在,請說明理由.
分析:(1)根據(jù)矩形的性質(zhì)AD∥BC,所以∠BCE=∠DEC,再根據(jù)等腰三角形三線合一的性質(zhì)求解即可;
(2)因為鄰邊BE、BC相等,所以只要作出的是平行四邊形就可以,在ED延長線上可以,而在EA的延長線上不能作出以BC、BE為鄰邊的平行四邊形.
解答:解:(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠BCE=∠DEC,
又∵BE=BC,
∴∠BCE=∠BEC.
∴∠BEC=∠DEC,
∴CE平分∠BED;

(2)在直線AD上存在點F,使得以B、C、F、E為頂點的四邊形是菱形.
延長ED至F,使得EF=BC,此時四邊形BCFE是菱形.
∵AE>DE,
∴BE>CE,
因此在EA的延長線上不存在點F,使得四邊形BCEF為菱形.
點評:本題主要利用矩形的性質(zhì)、等腰三角形的性質(zhì)和勾股定理,熟練掌握并靈活運用是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,在矩形ABCD中,P是邊AD上的動點,PE垂直AC于E,PF垂直BD于F,如果AB=3,AD=4,那么(  )
A、PE+PF=
12
5
B、
12
5
<PE+PF<
13
5
C、PE+PF=5
D、3<PE+PF<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,在矩形ABCD中,M是邊BC的中點,AB=3,BC=4,⊙D與直線AM相切于點E,
求⊙D的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,AC是對角線.點P為矩形外一點且滿足AP=PC,AP⊥PC.PC交AD于點N,連接DP,過點P作PM⊥PD交AD于M.
(1)若AP=
5
,AB=
1
3
BC,求矩形ABCD的面積;
(2)若CD=PM,求證:AC=AP+PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,AB=4,AD=10,F(xiàn)是AD上一點,CF⊥EF于點F交AB于點E,
DC
CF
=
1
2
.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在矩形ABCD中,對角線AC與BD相交于點O,BE⊥AC于E,CF⊥BD于F,請你判斷BE與CF的大小關(guān)系,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案