【題目】如下圖,點外的一點,點,分別是兩邊上的點,點關(guān)于的對稱點恰好落在線段上,點關(guān)于的對稱點落在的延長線上.若,,則線段的長為__________

【答案】5.5

【解析】

根據(jù)軸對稱的性質(zhì)得到OA垂直平分PQOB垂直平分PR,則利用線段垂直平分線的性質(zhì)得QM=PM=3cm,RN=PN=4cm,然后計算QN,再計算QN+EN即可.

解:∵點P關(guān)于OA的對稱點Q恰好落在線段MN上,
OA垂直平分PQ,
QM=PM=3cm,
QN=MN-QM=4.5cm-3cm=1.5cm
∵點P關(guān)于OB的對稱點R落在MN的延長線上,
OB垂直平分PR,
RN=PN=4cm,
QR=QN+RN=1.5cm+4cm=5.5cm
故答案為5.5cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用小木棒擺成第1個圖形所需要的木棒根數(shù)是4根,擺成第2個圖形所需要的木棒根數(shù)是12根,擺成第3個圖形所需要的木棒根數(shù)是24根……按照此規(guī)律擺放,擺成第10個圖形所需要的木棒根數(shù)是__________根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售有甲、乙兩種商品,甲商品每件進價10元,售價15元;乙商品每件進價30元,售價40元。

(1)若該起市同時一次購進甲、兩種商品共80件,恰好用去1600元,求能購進甲乙兩種商品各多少件?

(2)該超市為使甲、乙兩種商品共80件的總利潤(利潤=售價-進價)不少于600元,但又不超過610元,請你幫助該超市設(shè)計相應(yīng)的進貨方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某租賃公司擁有汽車100.據(jù)統(tǒng)計,每輛車的月租金為4000元時,可全部租出.每輛車的月租金每增加100元,未租出的車將增加1.租出的車每輛每月的維護費為500元,未租出的車每輛每月只需維護費100.

1)當(dāng)每輛車的月租金為4600元時,能租出多少輛?并計算此時租賃公司的月收益(租金收入扣除維護費)是多少萬元?

2)規(guī)定每輛車月租金不能超過7200元,當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達40.4萬元?

3)當(dāng)每輛車的月租金定為_________元時,租賃公司的月收益最大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過點,直線x軸交于點

1)求的值;

2)過第二象限的點作平行于x軸的直線,交直線于點C,交函數(shù)的圖象于點D

①當(dāng)時,判斷線段PDPC的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某沿海城市A接到臺風(fēng)警報,在該城市正南方向260 kmB處有一臺風(fēng)中心,沿BC方向以15 km/h的速度向C移動,已知城市ABC的距離AD=100 km,那么臺風(fēng)中心經(jīng)過多長時間從B點移動到D點?如果在距臺風(fēng)中心30 km的圓形區(qū)域內(nèi)都將受到臺風(fēng)的影響,正在D點休息的游人在接到臺風(fēng)警報后的幾小時內(nèi)撤離才可以免受臺風(fēng)的影響?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某條道路上通行車輛限速為60千米/,在離道路50米處建有一個監(jiān)測點P道路AB段為檢測區(qū)(如圖).在ABP已知∠PAB=32°,PBA=45°,那么車輛通過AB段的時間在多少秒以內(nèi)時,可認(rèn)定為超速?(精確到0.1秒.參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標(biāo)為1.

(1)求k、b的值;

(2)若點Dy軸負(fù)半軸上,且滿足SCOD=SBOC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADABC的中線,EAD上的一點AE=2DE,連接BE并延長交AC于點F.

(1)求證:AFFC;

(2)的值.

查看答案和解析>>

同步練習(xí)冊答案