如圖,AE是△ABC的中線,已知EC=6,DE=2,則BD的長(zhǎng)為(  )
分析:根據(jù)三角形中線的定義可得BE=EC=6,再根據(jù)BD=BE-DE即可求解.
解答:解:∵AE是△ABC的中線,EC=6,
∴BE=EC=6,
∵DE=2,
∴BD=BE-DE=6-2=4.
故選C.
點(diǎn)評(píng):本題考查了三角形的中線的定義,是基礎(chǔ)題,準(zhǔn)確識(shí)圖并熟記中線的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AE是△ABC的中線,F(xiàn)在AE上,AE=3AF,BF延長(zhǎng)線交AC于點(diǎn)D.若△ABC的面積是48,求△AFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AE是△ABC外接圓O的直徑,AD是△ABC的邊BC上的高,EF⊥BC,F(xiàn)為垂足.
(1)求證:BF=CD;
(2)若CD=1,AD=3,BD=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梧州)如圖,AE是△ABC的角平分線,AD⊥BC于點(diǎn)D,若∠BAC=128°,∠C=36°,則∠DAE的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AE是△ABC的中線,A、E、D三點(diǎn)在一直線上,且AE=DE,那么△BDE可以看做是由
△CAE
△CAE
繞著
E
E
點(diǎn),旋轉(zhuǎn)
180
180
度得到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案