一堆有紅、白兩種顏色的球若干個(gè),已知白球的個(gè)數(shù)比紅球少,但白球的2倍比紅球多.若把每一個(gè)白球都記作“2”,每一個(gè)紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個(gè)?
分析:設(shè)白球有x個(gè),紅球有y個(gè),根據(jù)白球的個(gè)數(shù)比紅球少,但白球的2倍比紅球多,列出不等式,然后根據(jù)總數(shù)為60,列出方程,綜合求解即可.
解答:解:設(shè)白球有x個(gè),紅球有y個(gè),
由題意得,
x<y<2x
2x+3y=60
,
由第一個(gè)不等式得:3x<3y<6x,
由第二個(gè)個(gè)式子得,3y=60-2x,
則有3x<60-2x<6x,
∴7.5<x<12,
∴x可取8,9,10,11.
又∵2x=60-3y=3(20-y),
∴2x應(yīng)是3的倍數(shù),
∴x只能取9,
此時(shí)y=
60-2×9
3
=14.
答:白球有9個(gè),紅球有14個(gè).
點(diǎn)評(píng):本題考查了不等式與方程的綜合運(yùn)用,解答本題的關(guān)鍵是仔細(xì)審題,找到等量關(guān)系與不等關(guān)系,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一堆有紅、白兩種顏色的球各若干個(gè),已知白球的個(gè)數(shù)比紅球少,但白球的個(gè)數(shù)的二倍比紅球多,若把每一個(gè)白球都記作“2”,每一個(gè)紅球都記作“3”,則總數(shù)為60,那么白球有
 
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一堆有紅,白兩種顏色的球各若干個(gè),已知白球的個(gè)數(shù)比紅球少,但白球個(gè)數(shù)的2倍比紅球多,若把每個(gè)白球都記作“2”,每一個(gè)紅球都記作“3”,則總數(shù)為60,那么,白球有
9
9
個(gè),紅球有
14
14
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一堆有紅、白兩種顏色的球若干個(gè),已知白球的個(gè)數(shù)比紅球少,但白球的2倍比紅球多.若把每一個(gè)白球都記作“2”,每一個(gè)紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一堆有紅,白兩種顏色的球各若干個(gè),已知白球的個(gè)數(shù)比紅球少,但白球個(gè)數(shù)的2倍比紅球多,若把每個(gè)白球都記作“2”,每一個(gè)紅球都記作“3”,則總數(shù)為60,那么,白球有______個(gè),紅球有______個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案