已知過原點O的兩直線與圓心為M(0,4),半徑為2的圓相切,切點分別為P、Q,PQ交y軸于點K,拋物線經(jīng)過P、Q兩點,頂點為N(0,6),且與x軸交于A、B兩點.
(1)求點P的坐標;
(2)求拋物線解析式;
(3)在直線y=nx+m中,當n=0,m≠0時,y=m是平行于x軸的直線,設直線y=m與拋物線相交于點C、D,當該直線與⊙M相切時,求點A、B、C、D圍成的多邊形的面積(結果保留根號).
解:(1)如圖1,
∵⊙M與OP相切于點P,
∴MP⊥OP,即∠MPO=90°.
∵點M(0,4)即OM=4,MP=2,
∴OP=2.
∵⊙M與OP相切于點P,⊙M與OQ相切于點Q,
∴OQ=OP,∠POK=∠QOK.
∴OK⊥PQ,QK=PK.
∴PK===.
∴OK==3.
∴點P的坐標為(,3).
(2)如圖2,
設頂點為(0,6)的拋物線的解析式為y=ax2+6,
∵點P(,3)在拋物線y=ax2+6上,
∴3a+6=3.
解得:a=﹣1.
則該拋物線的解析式為y=﹣x2+6.
(3)當直線y=m與⊙M相切時,
則有=2.
解得;m1=2,m2=6.
①m=2時,如圖3,
則有OH=2.
當y=2時,解方程﹣x2+6=2得:x=±2,
則點C(2,2),D(﹣2,2),CD=4.
同理可得:AB=2.
則S梯形ABCD=(DC+AB)•OH=(4+2)×2=4+2.
②m=6時,如圖4,
此時點C、點D與點N重合.
S△ABC=AB•OC=×2×6=6.
綜上所述:點A、B、C、D圍成的多邊形的面積為4+2或6.
科目:初中數(shù)學 來源: 題型:
如圖,汽車在東西向的公路l上行駛,途中A,B,C,D四個十字路口都有紅綠燈.AB之間的距離為800米,BC為1000米,CD為1400米,且l上各路口的紅綠燈設置為:同時亮紅燈或同時亮綠燈,每次紅(綠)燈亮的時間相同,紅燈亮的時間與綠燈亮的時間也相同.若綠燈剛亮時,甲汽車從A路口以每小時30千米的速度沿l向東行駛,同時乙汽車從D路口以相同的速度沿l向西行駛,這兩輛汽車通過四個路口時都沒有遇到紅燈,則每次綠燈亮的時間可能設置為( 。
A. 50秒 B. 45秒 C. 40秒 D. 35秒
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖①,底面積為30cm2的空圓柱形容器內(nèi)水平放置著由兩個實心圓柱組成的“幾何體”,現(xiàn)向容器內(nèi)勻速注水,注滿為止,在注水過程中,水面高度h(cm)與注水時間t(s)之間的關系如圖②所示.
請根據(jù)圖中提供的信息,解答下列問題:
(1)圓柱形容器的高為 cm,勻速注水的水流速度為 cm3/s;
(2)若“幾何體”的下方圓柱的底面積為15cm2,求“幾何體”上方圓柱的高和底面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知甲、乙兩組抽樣數(shù)據(jù)的方差:S=95.43,S=5.32,可估計總體數(shù)據(jù)比較穩(wěn)定的是 組數(shù)據(jù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在邊為的1正方形組成的網(wǎng)格中,建立平面直角坐標系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),將△ABC沿著x軸翻折后,得到△DEF,點B的對稱點是點E,求過點E的反比例函數(shù)解析式,并寫出第三象限內(nèi)該反比例函數(shù)圖象所經(jīng)過的所有格點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖所示,從一副普通撲克牌中選取紅桃10、方塊10、梅花5、黑桃8四張撲克牌,洗勻后正面朝下放在桌子上,甲先從中任意抽取一張后,乙再從剩余三張撲克牌中任意抽取一張,用畫樹形圖或列表的方法,求甲、乙兩人抽取的撲克牌的點數(shù)都是10的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com