年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點(diǎn)與原點(diǎn)重合,在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點(diǎn)A的反比例函數(shù)中,k的值的變化情況是( )
A.一直增大 B.一直減小 C.先增大后減小 D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江寧波卷)數(shù)學(xué)(解析版) 題型:填空題
為解決停車難得問題,在如圖一段長56米的路段開辟停車位,每個車位是長5米、寬2.2米的矩形,矩形的邊與路的邊緣成45°角,那么這個路段最多可以劃出 個這樣的停車位()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:解答題
如圖1,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與x軸平行,且與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂,點(diǎn)M到線段AB的距離稱為碟高.
(1)拋物線y=x2對應(yīng)的碟寬為 ;拋物線y=4x2對應(yīng)的碟寬為 ;拋物線y=ax2(a>0)對應(yīng)的碟寬為 ;拋物線y=a(x﹣2)2+3(a>0)對應(yīng)的碟寬為 ;
(2)拋物線y=ax2﹣4ax﹣(a>0)對應(yīng)的碟寬為6,且在x軸上,求a的值;
(3)將拋物線y=anx2+bnx+cn(an>0)的對應(yīng)準(zhǔn)蝶形記為Fn(n=1,2,3…),定義F1,F(xiàn)2,…,F(xiàn)n為相似準(zhǔn)蝶形,相應(yīng)的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為,且Fn的碟頂是Fn﹣1的碟寬的中點(diǎn),現(xiàn)將(2)中求得的拋物線記為y1,其對應(yīng)的準(zhǔn)蝶形記為F1.
①求拋物線y2的表達(dá)式;
②若F1的碟高為h1,F(xiàn)2的碟高為h2,…Fn的碟高為hn,則hn= ,F(xiàn)n的碟寬有端點(diǎn)橫坐標(biāo)為 2 ;F1,F(xiàn)2,…,F(xiàn)n的碟寬右端點(diǎn)是否在一條直線上?若是,直接寫出該直線的表達(dá)式;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:解答題
已知梯形ABCD,請使用無刻度直尺畫圖.
(1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;
(2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,A、B、C、D四個點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為( 。
A.40° B.45° C.50° D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江西南昌卷)數(shù)學(xué)(解析版) 題型:選擇題
下列四個數(shù)中,最小的數(shù)是( )
A.﹣ B.0 C.﹣2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇鎮(zhèn)江卷)數(shù)學(xué)(解析版) 題型:選擇題
一個圓柱如圖放置,則它的俯視圖是( )
A.三角形 B.半圓 C.圓 D.矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(江蘇蘇州卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,二次函數(shù)(其中a,m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,-3),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD.過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2))求證:為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F.探索:在x軸的負(fù)半軸上是否存在點(diǎn)G,連接CF,以線段GF、AD、AE的長度為三邊長的三角形是直角三角形?如果存在,只要找出一個滿足要求的點(diǎn)G即可,并用含m的代數(shù)式表示該點(diǎn)的橫坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com