如圖(1),將一塊正方形木板用虛線劃分成36個全等的小正方形,然后,按其中的實線切成七塊形狀不完全相同的小木片,制成一副七巧板.用這副七巧板拼成圖(2)的圖案,則圖(2)中陰影部分的面積是整個圖案面積的(     )

A       B        C         D

文本框: 圖(2)文本框: 圖(1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:新教材新學(xué)案 數(shù)學(xué) 七年級下冊 題型:044

將一塊正六邊形硬紙片(圖1),做成一個底面仍為正六邊形且等高的無蓋紙盒(側(cè)面均垂直底面,圖2),需在一個頂點處剪去一個四邊形,如圖1中的四邊形AGH,求∠GH的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北大附中題庫 七年級數(shù)學(xué)(上、下學(xué)期用)、測試卷十五 第二學(xué)期期中檢測 題型:013

將一塊正六邊形硬紙片[如圖甲所示]做成一個底面仍為正六邊形且高相等的無蓋紙盒[側(cè)面均垂直于底面,如圖乙所示需在每一個頂點處剪去一個四邊形.例如圖 甲中的四邊形AGA′H,那么∠GA′H的度數(shù)為

[  ]

A.30°

B.45°

C.60°

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當扇形紙板的圓心角為__________時,正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當扇形紙板的圓心角為_________時,正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn),當扇形紙板的圓心角為________度時,正n邊形的邊被紙板覆蓋部分的總長度為定值a;

這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn).

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當扇形紙板的圓心角為__________時,正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當扇形紙板的圓心角為_________時,正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn),當扇形紙板的圓心角為________度時,正n邊形的邊被紙板覆蓋部分的總長度為定值a

這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期中題 題型:單選題

某人將一塊正五邊形玻璃打碎成四塊(如圖所示),現(xiàn)要到玻璃店配一塊完全一樣的玻璃,那么最省事的方法是 
[     ]
A.帶①去
B.帶①②去
C.帶①②③去
D.帶①②③④去

查看答案和解析>>

同步練習(xí)冊答案