⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為__________時,正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當扇形紙板的圓心角為_________時,正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉,當扇形紙板的圓心角為________度時,正n邊形的邊被紙板覆蓋部分的總長度為定值a;

這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

⑴在正方形ABCD中,設扇形兩半徑交AB、AD分別于EF

作連結OA、OD

O是正方形ABCD的中心,

OA = OD,∠OAD =∠ODA = 45°,

∴∠AOD = 90°∵扇形的圓心角∠EOF = 90°

∴∠AOE+∠AOF = ∠DOF + ∠AOF

∴∠AOE =∠DOF

∴△AOE≌△DOF(ASA)

AE = DF

所以被紙板覆蓋部分的總長度為AF + EF = AF + DF = AD = a為定值.

⑵120°,72°

是定值,被紙板覆蓋部分的面積是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•順義區(qū)一模)如圖,菱形ABCD中,AB=2,∠C=60°,我們把菱形ABCD的對稱中心稱作菱形的中心.菱形ABCD在直線l上向右作無滑動的翻滾,每繞著一個頂點旋轉60°叫一次操作,則經過1次這樣的操作菱形中心O所經過的路徑長為
3
3
π
3
3
π
;經過18次這樣的操作菱形中心O所經過的路徑總長為
(4
3
+2)π
(4
3
+2)π
;經過3n(n為正整數(shù))次這樣的操作菱形中心O所經過的路徑總長為
2
3
+1
3
2
3
+1
3
.(結果都保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過計算,比較下列各組中兩個數(shù)的大小(在空格內填“<”“>”“=”)
(1)12
 
21;(2)23
 
32;(3)34
 
43;(4)45
 
54;(5)56
 
65;…
(2)、從第1題的結果經過歸納,可猜想出nn+1和( n+1)n的大小關系是.
(3)、根據(jù)上面的歸納猜想得到的一般結論,試比較下面兩數(shù)的大。
20022003
 
20032002
27、如圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)進行下去;
精英家教網(wǎng)
(1)填表:
精英家教網(wǎng)
(2)請你推斷,能不能按上述操作過程,將原來的正方形剪成99個小正方形?為什么?
(3)觀察圖形,你還能得出什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:矩形紙片ABCD中,AB=26厘米,BC=18.5厘米,點EAD上,且AE=6厘米,點P邊上一動點.按如下操作:

步驟一,折疊紙片,使點P與點重合,展開紙片得折痕MN(如圖23(1)所示);

步驟二,過點P作,交MN所在的直線于點Q,連接QE(如圖23(2)所示)

(1)無論點P在邊上任何位置,都有PQ    QE(填“”、“”、“”號);

(2)如圖23(3)所示,將紙片ABCD放在直角坐標系中,按上述步驟一、二進行操作:

①當點點時,PT與MN交于點Q1 ,Q1點的坐標是(       ,      );

②當PA=6厘米時,PT與MN交于點Q2 ,Q2點的坐標是(       ,       );

③當PA=12厘米時,在圖22(3)中畫出MN,PT(不要求寫畫法),并求出MN與PT的交點Q3的坐標;

(3)點在運動過程中,PT與MN形成一系列的交點Q1 ,Q2 ,Q3 ,…觀察、猜想:眾多的交點形成的圖象是什么?并直接寫出該圖象的函數(shù)表達式.


                   23(1)               23(2)                 23(3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⑴操作:如圖23-1,O是邊長為a的正方形ABCD的中心,將一塊半徑足夠長、圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉.

    求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值a

   ⑵思考:如圖23-2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或邊長為a的正五邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為__________時,正三角形的邊被紙板覆蓋部分的總長度為定值a;如圖23-3,當扇形紙板的圓心角為_________時,正五邊形的邊被紙板覆蓋部分的總長度為定值a.(直接填空)

   ⑶探究:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉,當扇形紙板的圓心角為________度時,正n邊形的邊被紙板覆蓋部分的總長度為定值a;

這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關系(不需證明);若不是定值,請說明理由。

 

 

 

 

 

查看答案和解析>>

同步練習冊答案