【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點(diǎn),BD與過(guò)點(diǎn)C的直線互相垂直,垂足為點(diǎn)D,BD與半圓O交于點(diǎn)E,且BC平分∠DBA.
(1)求證:CD是半圓O的切線.
(2)若DC=8,BE=4,求圓的直徑.
【答案】(1)見(jiàn)解析;(2)4.
【解析】
試題分析:(1)首先連接OC,由OB=OC,BC平分∠DBA,易證得OC∥BD,又由BD⊥CD,即可證得結(jié)論;
(2)首先根據(jù)切割線定理求得BD,然后根據(jù)勾股定理求得BC,連接AC,通過(guò)證得△ABC∽△CBD,然后由相似三角形的對(duì)應(yīng)邊成比例,求得AB.
(1)證明:連接OC,
∵OB=OC,
∴∠1=∠2,
∵BC平分∠DBA,
∴∠2=∠3,
∴∠1=∠3,
∴OC∥BD,
∵BD⊥CD,
∴OC⊥CD,
∵C是半圓O上的一點(diǎn),
∴CD與半圓O相切;
(2)連接AC,
∵CD是切線,
∴CD2=DEBD,
∵DC=8,BE=4,
設(shè)BD=x,則82=x(x﹣4),
解得x=2+2,
∴BD=2,
∵∠BDC=90°,
∴BC2=CD2+BD2=64+(2+2)2,
∵AB是直徑,
∴∠ACB=90°=∠BDC,
∵∠BDC=∠ABC,
∴△CDB∽△ACB,
∴,
∴AB==4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題是真命題的是( )
A.方差越大,說(shuō)明數(shù)據(jù)就越穩(wěn)定
B.“預(yù)計(jì)本題的正確率是95%”表示100位考生中一定有95人做對(duì)
C.兩邊及其一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形一定全等
D.圓內(nèi)接四邊形對(duì)角互補(bǔ)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連接EC.
(1)求∠ECD的度數(shù);
(2)若CE=5,求BC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.
下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=AD
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合
∵∠ADC=∠B=90°
∴∠FDG=180°,點(diǎn)F、D、G共線根據(jù)SAS,易證△AFG≌ ,從而可得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系 時(shí),仍有EF=BE+DF.
請(qǐng)寫(xiě)出推理過(guò)程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路上學(xué),先從家步行到公交站臺(tái)甲,再乘車(chē)到公交站臺(tái)乙下車(chē),最后步行到學(xué)校(在整個(gè)過(guò)程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家時(shí)間x(分鐘)之間的函數(shù)關(guān)系.
(1)求小麗步行的速度及學(xué)校與公交站臺(tái)乙之間的距離;
(2)當(dāng)8≤x≤15時(shí),求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過(guò)A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求△ACQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年西昌市的洋蔥喜獲豐收,據(jù)估計(jì)洋蔥的產(chǎn)量約是325 000 000千克,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為 克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三個(gè)視圖如圖所示(單位:cm).
(1)寫(xiě)出這個(gè)幾何體的名稱(chēng): ;
(2)若其俯視圖為正方形,根據(jù)圖中數(shù)據(jù)計(jì)算這個(gè)幾何體的表面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com