分析 (1)由已知條件得到BD=CD,即可證明△BDE≌△CDF,根據(jù)全等三角形對(duì)應(yīng)邊相等的性質(zhì)即可解題;
(2)根據(jù)等邊三角形的性質(zhì)得到∠EDB=60°,由AD是三角形ABC的中線,得到BD=CD=AD=4,根據(jù)等腰三角形的性質(zhì)得到∠CAD=∠ACD=∠EDB=30°,解直角三角形即可得到結(jié)論.
解答 (1)證明:∵AD是△ABC的中線,
∴BD=CD,
在△BDE和△CDF中,
$\left\{\begin{array}{l}{∠BED=∠CFD=90°}\\{∠BDE=∠CDF}\\{BD=CD}\end{array}\right.$,
∴△BDE≌△CDF(AAS),
∴BE=CF;
(2)解:∵△ABD為等邊三角形,邊長(zhǎng)為4,
∴∠EDB=60°,
∵AD是三角形ABC的中線,
∴BD=CD=AD=4,
∴∠CAD=∠ACD=∠DBE=30°,
在直角三角形BDE中,BE=$\frac{\sqrt{3}}{2}$BD=2$\sqrt{3}$,
由(1)得BE=CF=2$\sqrt{3}$,
在直角三角形AFC中,AC=2CF=4$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了全等三角形的判定,考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),本題中求證△BDE≌△CDF是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5,12,13 | B. | 1,$\sqrt{2}$,$\sqrt{3}$ | C. | 2,3,$\sqrt{5}$ | D. | 4,5,7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-a2)5=-a10 | B. | (x4)3=x7 | C. | b5•b5=b25 | D. | a6÷a2=a3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+2)(x-2)=x2-2 | B. | (a+b)(b-a)=a2-b2 | C. | (-a+b)2=a2-2ab+b2 | D. | (-a-b)2=a2-2ab+b2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com