【題目】近年來(lái),我國(guó)煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時(shí)起,井內(nèi)空氣中CO的濃度達(dá)到4mg/L,此后濃度呈直線型增加,在第7小時(shí)達(dá)到最高值46mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降.如圖所示,根據(jù)題中相關(guān)信息回答下列問(wèn)題:

(1)求爆炸前后空氣中CO濃度y與時(shí)間x的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量取值范圍;
(2)當(dāng)空氣中的CO濃度達(dá)到34mg/L時(shí),井下3km的礦工接到自動(dòng)報(bào)警信號(hào),這時(shí)他們至少要以多少km/h的速度撤離才能在爆炸前逃生?
(3)礦工只有在空氣中的CO濃度降到4mg/L及以下時(shí),才能回到礦井開(kāi)展生產(chǎn)自救,求礦工至少在爆炸后多少小時(shí)才能下井?

【答案】
(1)解:因?yàn)楸ㄇ皾舛瘸手本型增加,

所以可設(shè)y與x的函數(shù)關(guān)系式為y=k1x+b(k1≠0),

由圖象知y=k1x+b過(guò)點(diǎn)(0,4)與(7,46),

解得 ,

則y=6x+4,此時(shí)自變量x的取值范圍是0≤x≤7.

(不取x=0不扣分,x=7可放在第二段函數(shù)中)

∵爆炸后濃度成反比例下降,

∴可設(shè)y與x的函數(shù)關(guān)系式為 (k2≠0).

由圖象知 過(guò)點(diǎn)(7,46),

∴k2=322,

,此時(shí)自變量x的取值范圍是x>7.


(2)解:當(dāng)y=34時(shí),由y=6x+4得,6x+4=34,x=5.

∴撤離的最長(zhǎng)時(shí)間為7﹣5=2(小時(shí)).

∴撤離的最小速度為3÷2=1.5(km/h).


(3)解:當(dāng)y=4時(shí),由y= 得,x=80.5,

80.5﹣7=73.5(小時(shí)).

∴礦工至少在爆炸后73.5小時(shí)才能下井.


【解析】(1)設(shè)爆炸前y與x的函數(shù)關(guān)系式為y=k1x+b(k1≠0),再由圖象所經(jīng)過(guò)點(diǎn)的坐標(biāo)(0,4),(7,46)求出k1與b的值,然后得出函數(shù)式,從而求出自變量x的取值范圍.設(shè)爆炸后y與x之間的函數(shù)關(guān)系式為y(k2≠0)過(guò)點(diǎn)(7,46),求出k2的值,再由函數(shù)式求出自變量x的取值范圍.
(2)當(dāng)y=34時(shí),由y=6x+4得x=5,從而求出撤離的最長(zhǎng)時(shí)間,再由v=求速度即可.
(3)將y=4代入反比例函數(shù)關(guān)系式可求得x=80.5,礦工至少在爆炸后80.5-7=73.5(小時(shí))才能下井.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知12+22+32++n2nn+1)(2n+1)(n為正整數(shù)).

22+42+62++502的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,D、EF三點(diǎn)分別在AB,AC,BC三邊上,過(guò)點(diǎn)D的直線與線段EF的交點(diǎn)為點(diǎn)H,∠1+∠2=180°∠3=∠C

1)求證:DEBC;

2)在以上條件下,若ABCD,E兩點(diǎn)的位置不變,點(diǎn)F在邊BC上運(yùn)動(dòng)使得DEF的大小發(fā)生變化,保證點(diǎn)H存在且不與點(diǎn)F重合,探究:要使∠1=∠BFH成立,請(qǐng)說(shuō)明點(diǎn)F應(yīng)該滿(mǎn)足的位置條件,在圖2中畫(huà)出符合條件的圖形并說(shuō)明理由.

3)在(2)的條件下,若C=α,直接寫(xiě)出BFH的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知在△ABC中,ABACD為線段BC上一點(diǎn),E為線段AC上一點(diǎn),且ADAE

(1)若∠ABC60°,∠ADE70°,求∠BAD與∠CDE的度數(shù);

(2)設(shè)∠BADα,∠CDEβ,試寫(xiě)出α、β之間的關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,B、C、D三點(diǎn)在一條直線上,AC平分∠DCE,且與BE的延長(zhǎng)線交于點(diǎn)A。

1)如果∠A=35°,∠B=30°,求∠BEC的度數(shù);

2)小明經(jīng)過(guò)改變∠A,∠B的度數(shù)進(jìn)行多次探究,得出A、BBEC三個(gè)角之間存在固定的數(shù)量關(guān)系,請(qǐng)用一個(gè)等式表示出這個(gè)關(guān)系,并進(jìn)行證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一方形ABCD中.E為對(duì)角線AC上一點(diǎn),連接EBED,

1)求證:△BEC≌△DEC:

2)延長(zhǎng)BEAD于點(diǎn)F,若∠DEB=140°.求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,對(duì)稱(chēng)軸平行于y軸的拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,過(guò)C作CD∥x軸,與拋物線交于點(diǎn)D.若OA=1,CD=4,則線段AB的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴(kuò)大銷(xiāo)售增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)一元,市場(chǎng)每天可多售件,問(wèn)他降價(jià)多少元時(shí),才能使每天所賺的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將三角形ABC向左平移至點(diǎn)B與原點(diǎn)重合,得三角形AOC

1)直接寫(xiě)出三角形ABC的三個(gè)頂點(diǎn)的坐標(biāo)A  ,B  ,C  ;

2)畫(huà)出三角形AOC;

3)求三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案