若點(diǎn)C是AB的黃金分割點(diǎn),且AC>BC.則AB與AC之比是多少?

答案:略
解析:

1


提示:

ABAC并不是黃金比,而是黃金比的倒數(shù),這是容易忽略的.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
s1
s
=
s2
s1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖2所示,則精英家教網(wǎng)直線CD是△ABC的黃金分割線,你認(rèn)為對(duì)嗎?說(shuō)說(shuō)你的理由;
(2)請(qǐng)你說(shuō)明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃石)如圖1,點(diǎn)C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請(qǐng)問(wèn)直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對(duì)角線AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

1.研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖②所示,則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?

2.請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?

3.研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任意作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.

4.如圖④,點(diǎn)E是□ABCD的邊AB上的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是□ABCD的黃金分割線,請(qǐng)你畫(huà)一條□ABCD的黃金分割線,使它不經(jīng)過(guò)□ABCD各邊黃金分割點(diǎn).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011~2012學(xué)年江蘇蘇州八年級(jí)下期期末復(fù)習(xí)(一)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖①,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.
【小題1】研究小組猜想:在△ABC中,若點(diǎn)D為AB邊上的黃金分割點(diǎn),如圖②所示,則直線CD是△ABC的黃金分割線.你認(rèn)為對(duì)嗎?為什么?
【小題2】請(qǐng)你說(shuō)明:三角形的中線是否也是該三角形的黃金分割線?
【小題3】研究小組在進(jìn)一步探究中發(fā)現(xiàn):過(guò)點(diǎn)C任意作一條直線交AB于點(diǎn)E,再過(guò)點(diǎn)D作直線DF∥CE,交AC于點(diǎn)F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請(qǐng)你說(shuō)明理由.
【小題4】如圖④,點(diǎn)E是□ABCD的邊AB上的黃金分割點(diǎn),過(guò)點(diǎn)E作EF∥AD,交DC于點(diǎn)F,顯然直線EF是□ABCD的黃金分割線,請(qǐng)你畫(huà)一條□ABCD的黃金分割線,使它不經(jīng)過(guò)□ABCD各邊黃金分割點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(湖北黃石卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,點(diǎn)C將線段AB分成兩部分,如果,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn)。某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點(diǎn)D,請(qǐng)問(wèn)點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;

(2)若△ABC在(1)的條件下,如圖(3),請(qǐng)問(wèn)直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;

(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對(duì)角線AC、BD交于點(diǎn)F,延長(zhǎng)AB、DC交于點(diǎn)E,連接EF交梯形上、下底于G、H兩點(diǎn),請(qǐng)問(wèn)直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案