【題目】如圖,在⊙中,AB是直徑,BC是弦,BC=BD,連接CD交⊙于點(diǎn)E,∠BCD=∠DBE.
(1)求證:BD是⊙的切線.
(2)過(guò)點(diǎn)E作EF⊥AB于F,交BC于G,已知DE=,EG=3,求BG的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)BG的長(zhǎng)為5.
【解析】
(1)連接AE,根據(jù)圓周角定理可得∠BAE=∠BCE,由AB是直徑可得∠AEB=90°,進(jìn)而可得∠BAE+∠ABE=90°,由∠BCD=∠DBE.利用等量代換即可求出∠ABD=90°,可得BD是⊙O的切線;(2)延長(zhǎng)EF交⊙O于H,根據(jù)垂徑定理可得,進(jìn)而可得∠ECB=∠BEH,由∠EBC是公共角即可證明△EBC∽△GBE,根據(jù)相似三角形的性質(zhì)可得,根據(jù)等腰三角形的性質(zhì)可得∠D=∠BCE,利用等量代換可得∠D=∠DBE,可得BE=DE,由∠AFE=∠ABD=90°可得EF//BD,根據(jù)平行線性質(zhì)可得∠D=∠CEF,即可證明∠BCE=∠CEF,可得CG=GE,即可得出BC=BG+EG,代入求出BG的長(zhǎng)即可.
(1)如圖,連接AE,則∠BAE=∠BCE,
∵AB是直徑,
∴∠AEB=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE+∠BCE=90°,
∵∠BCE=∠DBE,
∴∠ABE+∠DBE=90°,即∠ABD=90°,
∴BD是⊙O的切線.
(2)如圖,延長(zhǎng)EF交⊙O于H,
∵EF⊥AB,AB是直徑,
∴,
∴∠ECB=∠BEH,
∵∠EBC=∠GBE,
∴△EBC∽△GBE,
∴,
∵BC=BD,
∴∠D=∠BCE,
∵∠BCE=∠DBE,
∴∠D=∠DBE,
∴BE=DE=,
∵∠AFE=∠ABD=90°,
∴BD∥EF,
∴∠D=∠CEF,
∴∠BCE=∠CEF,
∴CG=GE=3,
∴BC=BG+CG=BG+3,
∴,
∴BG=-8(舍)或BG=5,
即BG的長(zhǎng)為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾分類是對(duì)垃圾傳統(tǒng)收集處理方式的改變,是對(duì)垃圾進(jìn)行有效處理的一種科學(xué)管理方法.為了增強(qiáng)同學(xué)們垃圾分類的意識(shí),某班舉行了專題活動(dòng),對(duì)200件垃圾進(jìn)行分類整理,得到下列統(tǒng)計(jì)圖表,請(qǐng)根據(jù)統(tǒng)計(jì)圖表回答問(wèn)題:(其中A:可回收垃圾;B:廚余垃圾;C:有害垃圾;D:其它垃圾).
類別 | 件數(shù) |
A | 70 |
B | b |
C | c |
D | 48 |
(1)________;________;
(2)補(bǔ)全圖中的條形統(tǒng)計(jì)圖;
(3)有害垃圾C在扇形統(tǒng)計(jì)圖中所占的圓心角為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年夏季全國(guó)各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學(xué)生安全,開(kāi)展了“遠(yuǎn)離溺水·珍愛(ài)生命”的防溺水安全知識(shí)競(jìng)賽.現(xiàn)從該校七、八年級(jí)中各隨機(jī)抽取10名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)得分用表示,共分成四組:..C.D.),下面給出了部分信息:
七年級(jí)10名學(xué)生的競(jìng)賽成績(jī)是:99,80,99,86,99,96,90,100,89,82
八年級(jí)10名學(xué)生的競(jìng)賽成績(jī)?cè)?/span>組中的數(shù)據(jù)是:94,90,94
八年級(jí)抽取的學(xué)生競(jìng)賽成績(jī)扇形統(tǒng)計(jì)圖:
七、八年級(jí)抽取的學(xué)生競(jìng)賽成績(jī)統(tǒng)計(jì)表:
年級(jí) | 七年級(jí) | 八年級(jí) |
平均數(shù) | 92 | |
中位數(shù) | 93 | 94 |
眾數(shù) | 99 | 100 |
方差 | 52 | 50.4 |
根據(jù)以上信息,解答下列問(wèn)題:
(1)直接寫(xiě)出上述圖表中的值;
(2)根據(jù)以上數(shù)據(jù),你認(rèn)為該校七、八年級(jí)學(xué)生掌握防溺水安全知識(shí)較好?請(qǐng)說(shuō)明理由(一條理由即可);
(3)該校七、八年級(jí)共720人參加了此次競(jìng)賽活動(dòng),估計(jì)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀()的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“半日走遍江淮大地,安徽風(fēng)景盡在徽?qǐng)@”,位于省會(huì)合肥的徽?qǐng)@景點(diǎn)某年三月共接待游客萬(wàn)人,四月比三月旅游人數(shù)增加了,五月比四月游客人數(shù)增加了,已知三月至五月徽?qǐng)@的游客人數(shù)平均月增長(zhǎng)率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點(diǎn),P是AD上的一個(gè)動(dòng)點(diǎn),當(dāng)PC與PE的和最小時(shí),∠CPE的度數(shù)是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)=(≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當(dāng)≠1時(shí),>;④>0;⑤若=,且≠,則=2.其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點(diǎn)E在AB上,過(guò)點(diǎn)E作EF⊥BC,點(diǎn)G在FE的延長(zhǎng)線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年我市將創(chuàng)建全國(guó)森林城市,提出了“共建綠色城”的倡議.某校積極響應(yīng),在3月12日植樹(shù)節(jié)這天組織全校學(xué)生開(kāi)展了植樹(shù)活動(dòng),校團(tuán)委對(duì)全校各班的植樹(shù)情況道行了統(tǒng)計(jì),繪制了如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖.
(1)求該校的班級(jí)總數(shù);
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求該校各班在這一活動(dòng)中植樹(shù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,點(diǎn)O是邊AC的中點(diǎn),分別過(guò)點(diǎn)A、C作射線BO的垂線,E、F是垂足.
(1)如圖1,求證:四邊形AECF是平行四邊形;
(2)如圖2,若,,,求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com