(2004•本溪)已知圓O的直徑為6cm,如果直線l上的一點C到圓心O的距離為3cm,則直線l與圓O的位置關(guān)系是   
【答案】分析:欲求直線與圓的位置關(guān)系,關(guān)鍵是明確直線上一點到圓心的距離恰好等于圓的半徑,也就是說直線與圓至少有一個交點.
解答:解:∵圓O的半徑r=3cm,
且直線上存在一點到圓心的距離d=3cm,
∴直線與圓至少有一個交點.
①當圓與直線有且只有一個交點時,交點到圓心的距離為3cm,
此時直線與圓相切.
②當直線與圓有兩個交點時,交點到圓心的距離為3cm.
此時直線與圓相交.
∴直線與圓的位置關(guān)系是相交或相切.
點評:本題考查的是直線與圓的位置關(guān)系,解決此類問題可通過比較圓心到直線距離d與圓半徑大小關(guān)系完成判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省部分市中考數(shù)學試卷(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圓》(08)(解析版) 題型:填空題

(2004•本溪)已知,兩圓半徑分別為4cm和2cm,圓心距為10cm,則兩圓的內(nèi)公切線的長為    cm.

查看答案和解析>>

同步練習冊答案