【題目】把正方形ABCD繞著點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)得到正方形AEFG,邊FGBC交于點(diǎn)H(如圖).試問(wèn)線段HG與線段HB相等嗎?請(qǐng)先觀察猜想,然后再證明你的猜想.

【答案】解:

證法1:連結(jié),

四邊形,都是正方形.

由題意知,又

證法2:連結(jié)

四邊形都是正方形,

由題意知

【解析】

試題要證明HGHB是否相等,可以把線段放在兩個(gè)三角形中證明這兩個(gè)三角形全等,或放在一個(gè)三角形中證明這個(gè)三角形是等腰三角形,而圖中沒(méi)有這樣的三角形,因此需要作輔助線,構(gòu)造三角形.

試題解析:HG=HB,

證法1:連接AH,

四邊形ABCDAEFG都是正方形,

∴∠B=∠G=90°,

由題意知AG=AB,又AH=AH,

∴Rt△AGH≌Rt△ABHHL),

∴HG=HB

證法2:連接GB,

四邊形ABCD,AEFG都是正方形,

∴∠ABC=∠AGF=90°,

由題意知AB=AG

∴∠AGB=∠ABG,

∴∠HGB=∠HBG

∴HG=HB

考點(diǎn);1.正方形的性質(zhì);2.全等三角形的判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線C1yax+225的頂點(diǎn)為P,與x軸相較于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且點(diǎn)B的坐標(biāo)為(10

1)求拋物線C1的函數(shù)解析式;

2)如圖,拋物線C2與拋物線C1關(guān)于x軸對(duì)稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點(diǎn)為M,當(dāng)點(diǎn)P,M關(guān)于點(diǎn)O成中心對(duì)稱時(shí).①求點(diǎn)M的坐標(biāo);②求拋物線C3的解析式;

3)在(2)的條件下,設(shè)拋物線C3x軸的正半軸交于點(diǎn)D,在直線PD的上方的拋物線C3上,是否存在點(diǎn)Q使得PDQ的面積最大?若存在,求出當(dāng)點(diǎn)Q的橫坐標(biāo)為何值時(shí)PDQ面積最大,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)關(guān)于的反比例函數(shù)。

1)求的值;

2)函數(shù)圖象在哪些象限?在每個(gè)象限內(nèi),的增大而怎樣變化?

3)當(dāng)時(shí),求的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商家銷售一款商品,進(jìn)價(jià)每件80元,售價(jià)每件145元,每天銷售40件,每銷售一件需支付給商場(chǎng)管理費(fèi)5元,未來(lái)一個(gè)月30天計(jì)算,這款商品將開(kāi)展每天降價(jià)1的促銷活動(dòng),即從第一天開(kāi)始每天的單價(jià)均比前一天降低1元,通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該商品單價(jià)每降1元,每天銷售量增加2件,設(shè)第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤(rùn)為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自行車行銷售甲、乙兩種品牌的自行車,若購(gòu)進(jìn)甲品牌自行車5輛,乙品牌自行車6輛,需要進(jìn)貨款9500元,若購(gòu)進(jìn)甲品牌自行車3輛,乙品牌自行車2輛,需要進(jìn)貨款4500元.

1)求甲、乙兩種品牌自行車每輛進(jìn)貨價(jià)分別為多少元;

2)今年夏天,車行決定購(gòu)進(jìn)甲、乙兩種品牌自行車共50輛,在銷售過(guò)程中,甲品牌自行車的利潤(rùn)率為,乙品牌自行車的利潤(rùn)率為,若將所購(gòu)進(jìn)的自行車全部銷售完畢后其利潤(rùn)不少于29500,那么此次最多購(gòu)進(jìn)多少輛乙種品牌自行車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,如圖所示,并規(guī)定:顧客消費(fèi)200元(含200元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)九折、八折、七折區(qū)域,顧客就可以獲得此項(xiàng)優(yōu)惠,如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.

1)某顧客正好消費(fèi)220元,他轉(zhuǎn)一次轉(zhuǎn)盤,他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費(fèi)中獲得了轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤的機(jī)會(huì),實(shí)際付費(fèi)168元,請(qǐng)問(wèn)他消費(fèi)所購(gòu)物品的原價(jià)應(yīng)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題9分)如圖,的直徑,上一點(diǎn),連接.過(guò)點(diǎn)的切線,交的延長(zhǎng)線于點(diǎn),在上取一點(diǎn),使,連接,交于點(diǎn).請(qǐng)補(bǔ)全圖形并解決下面的問(wèn)題:

1)求證:;

2)如果,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號(hào))

①cos﹣60°=﹣;

②sin75°=;

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),且.

1)求拋物線的解析式及頂點(diǎn)的坐標(biāo);

2)判斷的形狀,證明你的結(jié)論;

3)點(diǎn)是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo)及的最小周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案