【題目】綜合題如圖①,∠DCE=∠ECB=α,∠DAE=∠EAB=β,∠D=30°,∠B=40°
(1)①用α或β表示∠CNA,∠MPA,∠CNA= , ∠MPA=
②求∠E的大。
(2)如圖②,∠BAD的平分線AE與∠BCD的平分線CE交于點E,則∠E與∠B,∠D之間是否存在某種等量關(guān)系?若存在,寫出結(jié)論,說明理由;若不存在,說明理由.
【答案】
(1)40°+α,30°+β,∵∠ECD=∠ECB= ∠BCD,∠EAD=∠EAB= ∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E= (∠D+∠B)=35°;
(2)解:延長BC交AD于點F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB= ∠BCD,∠EAD=∠EAB= ∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB﹣∠ECB=∠B+∠BAE﹣ ∠BCD=∠B+∠BAE﹣ (∠B+∠BAD+∠D)= (∠B﹣∠D),
即∠AEC= .
【解析】解:(1)①∠CNA=∠D+∠DCE=40°+α,∠CPA=∠B+∠BAP=30°+β,
所以答案是:40°+α,30°+β;
【考點精析】解答此題的關(guān)鍵在于理解三角形的內(nèi)角和外角的相關(guān)知識,掌握三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角,以及對三角形的外角的理解,了解三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.在選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)
B.數(shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
C.一組數(shù)據(jù)1,1,0,2,4的平均數(shù)為2
D.甲、乙兩人數(shù)學(xué)成績的平均分都是95,方差分別是2.5和10.5,要選擇一人參加數(shù)學(xué)競賽,選甲比較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b互為相反數(shù),c,d互為倒數(shù),|e|= ,則代數(shù)式5(a+b)2+ cd﹣2e的值為( )
A.﹣
B.
C. 或﹣
D.﹣ 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AB上,將△BCD繞點C按順時針方向旋轉(zhuǎn)90°后得△ECF.
(1)補充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算: ①﹣20+(﹣14)﹣(﹣18)﹣13
②(﹣1)÷(﹣1 )×3
③6÷(﹣ + )
④﹣16﹣|﹣5|+2×(﹣ )2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年國家將擴大公共場所免費上網(wǎng)范圍,某小區(qū)響應(yīng)號召調(diào)查小區(qū)居民上網(wǎng)費用情況,隨機抽查了30戶家庭的月上網(wǎng)費用,結(jié)果如表
月網(wǎng)費(元) | 50 | 100 | 150 |
戶數(shù)(人) | 15 | 12 | 3 |
則關(guān)于這30戶家庭的月上網(wǎng)費用,中位數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a,b,是平面上任意二條直線,交點可以有( )
A. 1個或2個或3個 B. 0個或1個
C. 1個或2個 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以ABCO的頂點O為原點,邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點A、C的坐標(biāo)分別是(2,4)、(3,0),過點A的反比例函數(shù)的圖象交BC于D,連接AD,則四邊形AOCD的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com