如圖,在梯形ABCD中,ADBC,∠A=90°,E是邊AB上一點(diǎn),且BE=AD,F(xiàn)是CD的中點(diǎn),EF⊥CD.求證:AE=BC.
證明:∵F是CD的中點(diǎn),EF⊥CD,
∴直線EF時(shí)CD的垂直平分線,
∴ED=EC,
在△ADE與△BEC中
∵ADBC,
∴∠B=∠A=90°,
∵BE=AD,
∴Rt△ADE≌Rt△BEC(HL),
∴AE=BC.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若等腰梯形ABCD的上、下底之和為4,并且兩條對(duì)角線所夾銳角為60°,則該等腰梯形的面積為______.(結(jié)果保留根號(hào)的形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,對(duì)角線CA平分∠BCD,且梯形的周長為20,則AC=______,梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,梯形ABCD中,∠ABC和∠DCB的平分線相交于梯形中位線EF上的一點(diǎn)P,若EF=4,則梯形ABCD的周長為( 。
A.16B.12C.10.5D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在等腰梯形ABCD中,ADBC,對(duì)角線AC⊥BD于點(diǎn)O,AE⊥BC,DF⊥BC,垂足分別為E,F(xiàn),AD=4,BC=8,則AE+EF=(  )
A.9B.10C.11D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在梯形ABCD中,ABDC,EF是梯形的中位線,AC交EF于G,BD交EF于H,以下說法錯(cuò)誤的是( 。
A.ABEF
B.AB+DC=2EF
C.四邊形AEFB和四邊形ABCD相似
D.EG=FH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有若干個(gè)邊長都為2的小正方形.若小正方形Ⅱ的一個(gè)頂點(diǎn)在小正方形I的中心O1,如圖所示;類似地小正方形Ⅲ的一個(gè)頂點(diǎn)在小正方形Ⅱ的中心O2,并且小正方形I與小正方形Ⅲ不相重疊,如果若干個(gè)小正方形都按這種方法拼接,問需要幾個(gè)小正方形能使拼接出的圖形的陰影部分的面積等于一個(gè)小正方形的面積,并給出你的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,正方形ABCD對(duì)角線交于O,點(diǎn)O是正方形A′B′C′O的一個(gè)頂點(diǎn),兩個(gè)正方形的邊長都是2,那么正方形A′B′C′O繞O無論怎樣轉(zhuǎn)動(dòng)時(shí),圖中兩個(gè)正方形重疊部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)P是正方形ABCD的對(duì)角線BD上一點(diǎn),PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出下列五個(gè)結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=
2
EC.其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案