【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EFAD相交于點H,延長DAGF于點K.若正方形ABCD邊長為,則HD的長為____ .

【答案】1

【解析】

連接BH,由正方形的性質得出∠BAH=ABC=BEH=F=90°,由旋轉的性質得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL證明RtABHRtEBH,得出∠ABH=EBH=ABE=30°,AH=EH,由三角函數(shù)求出AH,即可得出HD的長.

連接BH,如圖所示:

∵四邊形ABCD和四邊形BEFG是正方形,

∴∠BAH=ABC=BEH=F=90°,

由旋轉的性質得:AB=EB,∠CBE=30°,

∴∠ABE=60°,

RtABHRtEBH中,,

RtABH≌△RtEBHHL),

∴∠ABH=EBH=ABE=30°,AH=EH

AH=ABtanABH=×=1,

HD=ADAH=1,

故答案為:1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A60°AB6,點MAB邊上一點,AM4,點NAD邊上的一動點,沿MNAMN翻折,點A落在點P處,當點P在菱形的對角線上時,AN的長度為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條拋物線與x軸相交于M,N兩點(M在點N的左側),其頂點P在線段AB上移動,點A,B的坐標分別為(-2,-3)(1,-3),點N的橫坐標的最大值為4,則點M的橫坐標的最小值為( )

A.-1 B.-3C.-5D.-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“勤勞”是中華民族的傳統(tǒng)美德,學校要求同學們在家里幫助父母做一些力所能及的家務.在本學期開學初,小穎同學隨機調查了部分同學寒假在家做家務的總時間,設被調查的每位同學寒假在家做家務的總時間為x小時,將做家務的總時間分為五個類別:A0x10),B10x20),C20x30),D30x40),Ex40).并將調查結果制成如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次共調查了   名學生;

2)請根據(jù)以上信息直接在答題卡中補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中m的值是   ,類別D所對應的扇形圓心角的度數(shù)是   度;

4)若該校有800名學生,根據(jù)抽樣調查的結果,請你估計該校有多少名學生寒假在家做家務的總時間不低于20小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國家的宏觀調控下,某市的商品房成交價由今年3月份的5000/m2下降到5月份的4050/m2.

(1)4、5兩月平均每月降價的百分率是多少?

(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口A的費用分別為14/噸,20/噸;從甲、乙兩倉庫運送物資到港口B的費用分別為10/噸、8/噸.

(Ⅰ)設從甲倉庫運往A港口x噸,試填寫表格.

表一

港口

從甲倉庫運(噸)

從乙倉庫運(噸)

A

   

   

B

   

   

表二

港口

從甲倉庫運到港口費用(元)

從乙倉庫運到港口費用(元)

A

14x

   

B

   

   

(Ⅱ)給出能完成此次運輸任務的最節(jié)省費用的調配方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,于點F,交⊙O于點E,ACBE于點H,點DOE延長線上的一點,且∠ODA=BEC

1)求證:AD是⊙O的切線;

2)求證:;

3)若⊙O的半徑為5,求AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB在反比例函數(shù)y(x0)的圖象上,點C,D在反比例函數(shù)y(k0)的圖象上,ACBDy軸,已知點A,B的橫坐標分別為12,△OAC與△ABD的面積之和為,則k的值為_____

查看答案和解析>>

同步練習冊答案