如圖(1),矩形ABCD的一邊BC在直角坐標(biāo)系中軸上,折疊邊AD,使點(diǎn)D落在軸上點(diǎn)F處,折痕為AE,已知AB=8,AD=10,并設(shè)點(diǎn)B坐標(biāo)為,其中>0.

(1)求點(diǎn)E、F的坐標(biāo)(用含的式子表示);
(2)連接OA,若△OAF是等腰三角形,求的值;
(3)設(shè)拋物線經(jīng)過(guò)圖(1)中的A、E兩點(diǎn),如圖(2),其頂點(diǎn)為M,連結(jié)AM,若∠OAM=90°,求、的值.

(1)E(m+10,3),F(xiàn)(m+6,0);(2)6或4或;(3),-1,12

解析試題分析:(1)∵根據(jù)矩形的性質(zhì)可得AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°,由折疊對(duì)稱性可得AF=AD=10,F(xiàn)E=DE,在Rt△ABF中,根據(jù)勾股定理可求得BF的長(zhǎng),從而可得FC的長(zhǎng),設(shè)DE=x,在Rt△ECF中,根據(jù)勾股定理即可列方程求得x的值,從而得到CE的長(zhǎng),即得結(jié)果;
(2)分三種情形討論:若AO=AF,若OF=AF,若AO=OF,根據(jù)等腰三角形的性質(zhì)及勾股定理求解;
(3)由(1)知A(m,8),E(m+10,3),再代入拋物線即可求得的值,從而表示出點(diǎn)M的坐標(biāo),設(shè)對(duì)稱軸交AD于G,即可表示出點(diǎn)G的坐標(biāo),求得AG、GM的長(zhǎng),再證得△AOB∽△AMG,根據(jù)相似三角形的性質(zhì)即可求得結(jié)果.
(1)∵四邊形ABCD是矩形,

∴AD=BC=10,AB=CD=8,∠D=∠DCB=∠ABC=90°.
由折疊對(duì)稱性:AF=AD=10,F(xiàn)E=DE.
在Rt△ABF中,BF=.
∴FC="4."
設(shè)DE=x,在Rt△ECF中,,解得
∴CE= 
∵B(m,0)
∴E(m+10,3),F(xiàn)(m+6,0);
(2)分三種情形討論:
若AO=AF,∵AB⊥OF,∴OB=BF=6.∴m=6.
若OF=AF,則m+6=10,解得m=4.  
若AO=OF,在Rt△AOB中,AO2=OB2+AB2=m2+64,
,解得m=.   
綜合得m=6或4或;
(3)由(1)知A(m,8),E(m+10,3).
由題意得, 解得  
∴M(m+6,﹣1).
設(shè)對(duì)稱軸交AD于G.
∴G(m+6,8),
∴AG=6,GM=
∵∠OAB+∠BAM=90°,∠BAM+∠MAG=90°,
∴∠OAB=∠MAG.
又∵∠ABO=∠MGA=90°,
∴△AOB∽△AMG.  
,即
∴m=12.
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評(píng):二次函數(shù)的綜合題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見(jiàn),一般以壓軸題形式出現(xiàn),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)計(jì)一個(gè)商標(biāo)圖案如圖中陰影部分,矩形ABCD中,AB=2BC,且AB=8cm,以點(diǎn)A為圓心,AD為半徑作圓與BA的延長(zhǎng)線相交于點(diǎn)F,則商標(biāo)圖案的面積等于
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在矩形ABCD中,AB=12cm,BC=5cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng).如果P、Q同時(shí)出發(fā),當(dāng)Q到達(dá)終點(diǎn)時(shí),精英家教網(wǎng)P也隨之停止運(yùn)動(dòng).用t表示移動(dòng)時(shí)間,設(shè)四邊形QAPC的面積為S.
(1)試用t表示AQ、BP的長(zhǎng);
(2)試求出S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△QAP為等腰直角三角形?并求出此時(shí)S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

Rt△ABC中,∠ACB=90°,BC=15,AC=20.CD為斜邊AB上的高.矩形EFGH的邊EF與CD重合,A、D、B、G在同一直線上(如圖1).將矩形EFGH向左邊平移,EF交AC于M(M不與A重合,如圖2),連接BM,BM交CD于N,連接NF.
(1)直接寫出圖2中所有與△CDB相似的三角形;
(2)設(shè)CE=x,△MNF的面積為y,求y與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求△MNF的最大面積;
(3)在平移過(guò)程中是否存在四邊形MFNC為平行四邊形的情形?若存在,求出x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點(diǎn),四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個(gè)直角三角形面積之和與矩形EFGH的面積之比為
1:1
1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在矩形ABCD中,AB=6,BC=8,⊙E和⊙F分別是△ABC和△ADC的內(nèi)切圓,與對(duì)角線AC分別切于E、F,則EF=
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案