【題目】如圖,已知△ABC,∠ABC=2∠C,以B為圓心任意長(zhǎng)為半徑作弧,交BA、BC于點(diǎn)E. F,分別以E. F為圓心,以大于EF的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn),則下列說法不正確的是( )
A.∠ADB=∠ABCB.AB=BDC.AC=AD+BDD.∠ABD=∠BCD
【答案】B
【解析】
根據(jù)作圖方法可得BD平分∠ABC,進(jìn)而可得∠ABD=∠DBC=∠ABC,然后根據(jù)條件∠ABC=2∠C可證明∠ABD=∠DBC=∠C,再根據(jù)三角形內(nèi)角和外角的關(guān)系可得A說法正確;根據(jù)等角對(duì)等邊可得DB=CD,進(jìn)而可得AC=AD+BD,可得C說法正確;根據(jù)等量代換可得D正確.
由題意可得BD平分∠ABC,
A. ∵BD平分∠ABC,
∴∠ABD=∠DBC=∠ABC,
∵∠ABC=2∠C,∠ADB=∠C+∠DBC,
∴∠ADB=2∠C,
∴∠ADB=∠ABC,故A不合題意;
B. ∵∠A≠∠ADB,
∴AB≠BD,故此選項(xiàng)符合題意;
C. ∵∠DBC=∠ABC,∠ABC=2∠C,
∴∠DBC=∠C,
∴DC=BD,
∵AC=AD+DC,
∴AC=AD+BD,故此選項(xiàng)不合題意;
D. ∵∠ABD=∠ABC,∠ABC=2∠C,
∴∠ABD=∠C,故此選項(xiàng)不合題意;
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠ABC=90°,D是直線AB邊上的點(diǎn),AD=BC
(1)如圖1,點(diǎn)D在線段AB上,過點(diǎn)A作AF⊥AB,且AF=BD,連接DC、DF、CF,試判斷△CDF的形狀并說明理由;
(2)如圖2,點(diǎn)D在線段AB的延長(zhǎng)線上,點(diǎn)F在點(diǎn)A的左側(cè),其他條件不變,以上結(jié)論是否仍然成立?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、點(diǎn)F分別是等邊△ABC的邊AB、AC上的點(diǎn),且BE=AF,CE、BF 相交于點(diǎn)P,則∠BPC的大小為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AD平分∠CAE交⊙O于點(diǎn)D,且AE⊥CD,垂足為點(diǎn)E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,兩邊及其中一邊的對(duì)角分別對(duì)應(yīng)相等的兩個(gè)三角形不一定全等.那么在什么情況下,它們會(huì)全等?
(1)閱讀與證明:
對(duì)于這兩個(gè)三角形均為直角三角形,顯然它們?nèi)龋?/span>
對(duì)于這兩個(gè)三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對(duì)于這兩個(gè)三角形均為銳角三角形,它們也全等,可證明如下:
如圖所示,、均為銳角三角形,,,.
求證:.
證明:分別過點(diǎn)B,作于點(diǎn)D,于點(diǎn).
∴.
在和,
∴.
.
____________________________________________________________.
(請(qǐng)你將上述證明過程補(bǔ)充完整)
(2)歸納與敘述:由(1)可得到一個(gè)正確結(jié)論,請(qǐng)你寫出這個(gè)結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與軸兩個(gè)交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對(duì)稱軸為直線,將此拋物線向左平移2個(gè)單位,再向下平移3個(gè)單位,得到的拋物線過點(diǎn)( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,張老師舉了下面的例題:
例1 等腰三角形中,,求的度數(shù).(答案:)
例2 等腰三角形中,,求的度數(shù).(答案:或或)
張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:
變式 等腰三角形中,,求的度數(shù).
(1)請(qǐng)你解答以上的變式題.
(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個(gè)數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖6,菱形ABCD,對(duì)角線AC、BD交于點(diǎn)O,BE⊥DC,垂足為E,交AC于點(diǎn)F.
求證:(1)△ABF∽△BED;(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線 EF 分別交 AB、CD于 點(diǎn) E、F,EG 平分∠AEF,
(1)求證:△EGF 是等腰三角形.
(2)若∠1=40°,求∠2 的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com