【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】A
【解析】
此題可根據(jù)二次函數(shù)的性質(zhì),結(jié)合其圖象可知:a>0,﹣1<c<0,b<0,再對各結(jié)論進(jìn)行判斷即可得答案.
①由圖象知拋物線頂點(diǎn)縱坐標(biāo)為﹣1,即=﹣1,故①正確;
②設(shè)C(0,c),則OC=|c|,
∵OA=OC=|c|,∴A(c,0)代入拋物線得ac2+bc+c=0,又c≠0,
∴ac+b+1=0,故②正確;
③從圖象中易知a>0,b<0,c<0,則abc>0,故③正確;
④當(dāng)x=﹣1時(shí)y=a﹣b+c,由圖象知(﹣1,a﹣b+c)在第二象限,
∴a﹣b+c>0,故④正確,
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A、B分別在x軸負(fù)半軸和y軸正半軸上,點(diǎn)C(2,-2),CA、CB分別交坐標(biāo)軸于D、E,CA⊥AB,且CA=AB.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖2,連接DE,求證:BD-AE=DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)
(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是________(請直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,BD為△ABC的高,延長BC至E,使CE=CD=1,連接DE,則BE=___________,∠BDE=_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結(jié)論有【 】個(gè).
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分∠BAD,交BC于E,若∠EAO=15°,則∠BOE的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對稱軸為直線x=﹣1,給出四個(gè)結(jié)論: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2; 其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,點(diǎn)M(不與A、B重合),從點(diǎn)A出發(fā)沿AB方向以cm/s的速度向終點(diǎn)B運(yùn)動.在運(yùn)動過程中,過點(diǎn)M作MN⊥AB,交射線BC于點(diǎn)N,以線段MN為直角邊作等腰直角三角形MNQ,且∠MNQ=90°(點(diǎn)B、Q位于MN兩側(cè)).設(shè)△MNQ與△ABC重疊部分圖形面積為S(cm2),點(diǎn)M的運(yùn)動時(shí)間為t(s).
(1)用含t的代數(shù)式表示線段MN的長,MN= .
(2)當(dāng)點(diǎn)N與點(diǎn)C重合時(shí),t= .
(3)求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場有、兩種商品,商品每件售價(jià)元,商品每件售價(jià)元,商品每件的成本是元.
根據(jù)市場調(diào)查“若按上述售價(jià)銷售,該商場每天可以銷售商品件,若銷售單價(jià)毎上漲元,商品每天的銷售量就減少件.
請寫出商品每天的銷售利潤(元)與銷售單價(jià)元之間的函數(shù)關(guān)系?
當(dāng)銷售單價(jià)為多少元時(shí),商品每天的銷售利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com