【題目】如圖,在直角坐標(biāo)系中,矩形ABCD的對(duì)角線AC經(jīng)過坐標(biāo)原點(diǎn)O,矩形的邊分別平行于坐標(biāo)軸,點(diǎn)B在函數(shù)y=(k≠0,x>0)的圖像上,點(diǎn)D的坐標(biāo)為(-4,1),則K的值為( )
A.B.C.4D.-4
【答案】D
【解析】
由于點(diǎn)B的坐標(biāo)不能求出,但根據(jù)反比例函數(shù)的幾何意義只要求出矩形OEBF的面積也可,依據(jù)矩形的性質(zhì)發(fā)現(xiàn)S矩形OGDH=S矩形OEBF,而S矩形OGDH可通過點(diǎn)D(-4,1)轉(zhuǎn)化為線段長而求得.,在根據(jù)反比例函數(shù)的所在的象限,確定k的值即可.
如圖,根據(jù)矩形的性質(zhì)可得:S矩形OGDH=S矩形OEBF,
∵D(-4,1),
∴OH=4,OG=1,
∴S矩形OGDH=OHOG=4,
設(shè)B(a,b),則OE=a,OF=-b,
∴S矩形OEBF=OEOF=-ab=4,
又∵B(a,b)在函數(shù)y=(k≠0,x>0)的圖象上,
∴k=ab=-4
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)、在直線上,且,于點(diǎn),且,以為直徑在的左側(cè)作半圓,于,且.
(1)若半圓上有一點(diǎn),則的最大值為________;
(2)向右沿直線平移得到;
①如圖,若截半圓的的長為,求的度數(shù);
②當(dāng)半圓與的邊相切時(shí),求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線:沿軸翻折得到拋物線.
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
① 當(dāng)時(shí),求拋物線和圍成的封閉區(qū)域內(nèi)(包括邊界)整點(diǎn)的個(gè)數(shù);
② 如果拋物線C1和C2圍成的封閉區(qū)域內(nèi)(包括邊界)恰有個(gè)整點(diǎn),求m取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(1,0),已知拋物線y=﹣x2+mx﹣2m(m是常數(shù)),頂點(diǎn)為P.
(1)當(dāng)拋物線經(jīng)過點(diǎn)A時(shí),求頂點(diǎn)P坐標(biāo);
(2)等腰Rt△AOB,點(diǎn)B在第四象限,且OA=OB.當(dāng)拋物線與線段OB有且僅有兩個(gè)公共點(diǎn)時(shí),求m滿足的條件;
(3)無論m取何值,該拋物線都經(jīng)過定點(diǎn)H.當(dāng)∠AHP=45°,求此拋物線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,過原點(diǎn)O及點(diǎn)A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點(diǎn)D為OB的中點(diǎn),點(diǎn)E是線段AB上的動(dòng)點(diǎn),連結(jié)DE,作DF⊥DE,交OA于點(diǎn)F,連結(jié)EF.已知點(diǎn)E從A點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度在線段AB上移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.
(1)如圖1,當(dāng)t=3時(shí),求DF的長.
(2)如圖2,當(dāng)點(diǎn)E在線段AB上移動(dòng)的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出tan∠DEF的值.
(3)連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時(shí),求相應(yīng)的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省某工廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)銷售量y(件)是售價(jià)x(元/件)的一次函數(shù),當(dāng)售價(jià)為23元/件時(shí),每天銷售量為790件;當(dāng)售價(jià)為25元/件,每天銷售量為750件.
(1)求y與x的函數(shù)關(guān)系;
(2)如果該工藝品最高不超過每件30元,那么售價(jià)定位每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面內(nèi),將兩個(gè)全等的等腰直角三角形和擺放在一起,為公共頂點(diǎn),,若固定不動(dòng),繞點(diǎn)旋轉(zhuǎn),、與邊的交點(diǎn)分別為、(點(diǎn)不與點(diǎn)重合,點(diǎn)不與點(diǎn)重合).
(1)求證:;
(2)在旋轉(zhuǎn)過程中,試判斷等式是否始終成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C將線段AB分成兩部分,若AC2=BCAB(AC>BC),則稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行拋物線課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金拋物線”,類似地給出“黃金拋物線”的定義:若拋物線y=ax2+bx+c,滿足b2=ac(b≠0),則稱此拋物線為黃金拋物線.
(Ⅰ)若某黃金拋物線的對(duì)稱軸是直線x=2,且與y軸交于點(diǎn)(0,8),求y的最小值;
(Ⅱ)若黃金拋物線y=ax2+bx+c(a>0)的頂點(diǎn)P為(1,3),把它向下平移后與x軸交于A(+3,0),B(x0,0),判斷原點(diǎn)是否是線段AB的黃金分割點(diǎn),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,E,F分別是邊AB,AD上的動(dòng)點(diǎn),AE=DF,連接DE,CF交于點(diǎn)P,過點(diǎn)P作PK∥BC,且PK=2,若∠CBK的度數(shù)最大時(shí),則BK長為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com