如圖在△ABC中,M是BC中點,AP是∠A平分線,BP⊥AP于P,AB=12,AC=22,則MP長為


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6
C
分析:延長BP交AC于N,利用角邊角定理求證△ABP≌△ANP,再利用M是BC中點,求證PM是△BNC的中位線,即可求出MP的長.
解答:解:延長BP交AC于N
∵AP是∠BAC的角平分線,BP⊥AP于P,
∴∠BAP=∠NAP,∠APB=∠APN=90°,
∴△ABP≌△ANP(ASA),
∴AN=AB=12,BP=PN,
∴CN=AC-AN=22-12=10,
∵BP=PN,BM=CM,
∴PM是△BNC的中位線,
∴PM=CN=5.
故選C.
點評:此題主要考查學(xué)生對全等三角形的判定與性質(zhì)和三角形中位線定理的理解和掌握,解答此題的關(guān)鍵是求證PM是△BNC的中位線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖在△ABC中,∠ACB=90°,CD是邊AB上的高.那么圖中與∠A相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在△ABC中,∠ABC=50°,∠ACB=75°,點O是內(nèi)心,則∠BOC的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG平分∠CDE,DC=AE,
求證:CG=EG.
證明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB邊上的中線
∴E是AB的中點
∴DE=
1
2
AB
1
2
AB
(直角三角形斜邊上的中線等于斜邊的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三線合一
等腰三角形三線合一

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的兩點,則圖中陰影部分的面積是
20
20

查看答案和解析>>

同步練習(xí)冊答案