【題目】下列不等式變形,成立的是(

A.mn,則m2n2B.mn,則2m2n

C.mn,則-2m<-2nD.mn,則

【答案】A

【解析】

不等式兩邊同時加上或減去同一個數(shù),不等號方向不改變;不等式兩邊同時乘以或除以同一個正數(shù),不等號方向不改變;不等式兩邊同時乘以或除以同一個負數(shù),不等號方向改變,根據(jù)此性質(zhì)進行判斷.

A、若mn,兩邊同時減去2,不等號方向不改變,∴m2n2,故本選項正確;

B、若mn,兩邊同時乘以-1,不等號方向改變,∴-m>-n,兩邊再同時加上2,不等號方向不改變,∴2m>2n,故本選項錯誤;

C、若mn,兩邊同時乘以-2,不等號方向改變,∴-2m>-2n,故本選項錯誤;

D、若mn,兩邊同時除以-2,不等號方向改變,∴,故本選項錯誤.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE90°

1)如圖①,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   °

2)如圖②,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,則∠COD   °

3)如圖③,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,<∠AOD180°,如果∠CODAOE,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 已知,如圖,點D是△ABC的邊AB的中點,四邊形BCED是平行四邊形.

1)求證:四邊形ADCE是平行四邊形;

2)在△ABC中,若ACBC,則四邊形ADCE   ;(只寫結(jié)論,不需證明)

3)在(2)的條件下,當(dāng)ACBC時,求證:四邊形ADCE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個教師承擔(dān)本學(xué)期期末考試的第17題的網(wǎng)上閱卷任務(wù),若由這三人中的某一人獨立完成閱卷任務(wù),則甲需要15小時,乙需要10小時,丙需要8小時。

1)如果甲、乙、丙三人同時改卷,那么需要多少時間完成?

2)如果按照甲、乙、丙、甲、乙、丙、……的次序輪流閱卷,每一輪中每人各閱卷1小時。那么要多少小時完成?

3)能否把(2)題所說的甲、乙、丙的次序作適當(dāng)調(diào)整,其余的不變,使得完成這項任務(wù)的時間至少提前半小時?(答題要求:如認為不能,需要說明理由;如認為能,請至少說出一種輪流的次序,并求出相應(yīng)能提前多少時間完成閱卷任務(wù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D,E是△ABCABBC邊上的點,且DEAC,∠ACB角平分線和它的外角的平分線分別交DE于點GH.則下列結(jié)論錯誤的是( )

A. BGCH,則四邊形BHCG為矩形

B. BECE時,四邊形BHCG為矩形

C. HECE,則四邊形BHCG為平行四邊形

D. CH3,CG4,則CE2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】)中是一座鋼管混凝土系桿拱橋,橋的拱肋ACB可視為拋物線的一部分(如圖②),橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,測得拱肋

的跨度AB200米,與AB中點O相距20米處有一高度為48米的系桿.

1】求正中間系桿OC的長度;

2】若相鄰系桿之間的間距均為5(不考慮系桿的粗細),則是否存在一根系桿的長度恰好是OC長度的一半?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列單項式:,,,……按此規(guī)律寫出第13個單項式是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017貴州省遵義市)如圖,拋物線a<0,a、b為常數(shù))與x軸交于A、C兩點,與y軸交于B點,直線AB的函數(shù)關(guān)系式為

(1)求該拋物線的函數(shù)關(guān)系式與C點坐標(biāo);

(2)已知點Mm,0)是線段OA上的一個動點,過點Mx軸的垂線l分別與直線AB和拋物線交于D、E兩點,當(dāng)m為何值時,BDE恰好是以DE為底邊的等腰三角形?

(3)在(2)問條件下,當(dāng)BDE恰好是以DE為底邊的等腰三角形時,動點M相應(yīng)位置記為點M,將OM繞原點O順時針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在90°之間);

①探究:線段OB上是否存在定點PP不與O、B重合),無論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點坐標(biāo);若不存在,請說明理由;

②試求出此旋轉(zhuǎn)過程中,(NA+NB)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知開口向上的拋物線yax2bxc,它與x軸的兩個交點分別為(1,0),(30).對于下列命題:①b2a=0;abc>0a2b4c0;8ac0.其中正確的有

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

同步練習(xí)冊答案