在學(xué)習(xí)中,小明發(fā)現(xiàn):當(dāng)n=1,2,3時(shí),n2﹣6n的值都是負(fù)數(shù).于是小明猜想:當(dāng)n為任意正整數(shù)時(shí),n2﹣6n的值都是負(fù)數(shù).小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

考點(diǎn):推理與論證。

專題:閱讀型。

分析:因?yàn)閚2﹣6n=n(n﹣6),所以只要n≥6時(shí),該式子的值都表示非負(fù)數(shù).

解答:答:不正確.

解法一:(利用反例證明)例如:當(dāng)n=7時(shí),n2﹣6n=7>0;

解法二:n2﹣6n=n(n﹣6),當(dāng)n≥6時(shí),n2﹣6n≥0.

點(diǎn)評(píng):通過(guò)此題可說(shuō)明一點(diǎn):學(xué)生在解答問(wèn)題時(shí)不能太片面性,而要能夠全面考慮問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在學(xué)習(xí)中,小明發(fā)現(xiàn):當(dāng)n=1,2,3時(shí),n2-6n的值都是負(fù)數(shù).于是小明猜想:當(dāng)n為任意正整數(shù)時(shí),n2-6n的值都是負(fù)數(shù).小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在學(xué)習(xí)中,小明發(fā)現(xiàn):①32-12=9-1=8=1×8;②52-12=25-1=24=3×8;③112-12=121-1=120=15×8;④172-12=289-1=288=36×8------
于是小明猜想:當(dāng)n為任意正奇數(shù)時(shí),n2-1的值一定是8的倍數(shù),你認(rèn)為小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在學(xué)習(xí)中,小明發(fā)現(xiàn):當(dāng)n=1,2,3時(shí),n2-6n的值都是負(fù)數(shù).于是小明猜想:當(dāng)n為任意正整數(shù)時(shí),n2-6n的值都是負(fù)數(shù).小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:溫州 題型:解答題

在學(xué)習(xí)中,小明發(fā)現(xiàn):當(dāng)n=1,2,3時(shí),n2-6n的值都是負(fù)數(shù).于是小明猜想:當(dāng)n為任意正整數(shù)時(shí),n2-6n的值都是負(fù)數(shù).小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.2.2.因式分解(解析版) 題型:解答題

(2009•溫州)在學(xué)習(xí)中,小明發(fā)現(xiàn):當(dāng)n=1,2,3時(shí),n2-6n的值都是負(fù)數(shù).于是小明猜想:當(dāng)n為任意正整數(shù)時(shí),n2-6n的值都是負(fù)數(shù).小明的猜想正確嗎?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案