【題目】如圖,在平面直角坐標系中,點為坐標原點,,的坐標分別為,動點從點沿以每秒個單位的速度運動;動點從點沿以每秒個單位的速度運動.同時出發(fā),設(shè)運動時間為秒.

1)在時,點坐標 ,點坐標

2)當為何值時,四邊形是矩形?

3)運動過程中,四邊形能否為菱形?若能,求出的值;若不能,說明理由.

【答案】1M3,8 N15,0 ;2t=7 ;3)能,t=5 .

【解析】

1)根據(jù)點B、C的坐標求出ABOA、OC,然后根據(jù)路程=速度×時間求出AM、CN,再求出ON,然后寫出點M、N的坐標即可;
2)根據(jù)有一個角是直角的平行四邊形是矩形,當AM=ON時,四邊形OAMN是矩形,然后列出方程求解即可;
3)先求出四邊形MNCB是平行四邊形的t值,并求出CN的長度,然后過點BBCOCD,得到四邊形OABD是矩形,根據(jù)矩形的對邊相等可得OD=AB,BD=OA,然后求出CD,再利用勾股定理列式求出BC,然后根據(jù)鄰邊相等的平行四邊形是菱形進行驗證.

解:(1)∵B15,8),C210),
AB=15,OA=8
OC=21,
t=3時,AM=1×3=3
CN=2×3=6,
ON=OC-CN=21-6=15
∴點M3,8),N15,0);
故答案為:(3,8);(150);

2)當四邊形OAMN是矩形時,AM=ON,
t=21-2t
解得t=7秒,
t=7秒時,四邊形OAMN是矩形;

3)存在t=5秒時,四邊形MNCB為菱形.
理由如下:四邊形MNCB是平行四邊形時,BM=CN
15-t=2t,
解得:t=5秒,
此時CN=5×2=10
過點BBDOCD,則四邊形OABD是矩形,
OD=AB=15BD=OA=8
CD=OC-OD=21-15=6,
RtBCD中,BC==10,
BC=CN
∴平行四邊形MNCB是菱形,
故,存在t=5秒時,四邊形MNCB能否為菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.

(1)求此拋物線的解析式;

(2)直接寫出點C和點D的坐標;

(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種水泥儲存罐的容量為25立方米,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3分鐘后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5分鐘儲存罐注滿,關(guān)閉輸入口,保持原來的輸出速度繼續(xù)向運輸車輸出水泥,當輸出的水泥總量達到8立方米時,關(guān)閉輸出口.儲存罐內(nèi)的水泥量y(立方米)與時間x(分)之間的部分函數(shù)圖象如圖所示.

(1)求每分鐘向儲存罐內(nèi)注入的水泥量.

(2)當3≤x≤5.5時,求yx之間的函數(shù)關(guān)系式.

(3)儲存罐每分鐘向運輸車輸出的水泥量是   立方米,從打開輸入口到關(guān)閉輸出口共用的時間為   分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,1),B(﹣1,﹣3).

(1)求此一次函數(shù)的解析式;

(2)求此一次函數(shù)的圖象與x軸、y軸的交點坐標;

(3)求此一次函數(shù)的圖象與兩坐標軸所圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABCA′B′C′關(guān)于點P位似,且頂點都在格點上.

(1)在圖上找出位似中心P的位置,并直接寫出點P的坐標是;

(2)寫出ABCA′B′C′的面積比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,AB=AC,CDBC于點C,交ABC的平分線于點D,AE平分BACBD于點E,過點EEFBCAC于點F,連接DF

(1)補全圖1;

(2)如圖1,當∠BAC=90°時,

求證:BE=DE;

寫出判斷DFAB的位置關(guān)系的思路(不用寫出證明過程);

(3)如圖2,當∠BAC=α時,直接寫出α,DF,AE的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店從廠家以21元的價格購進一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應售多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,ACBE相交于點F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1y2x3與直線l2y=﹣x+3相交于點P,分別與y軸相交于點A、B

1)求點P的坐標;

2)點M0,k)為y軸上的一個動點,過點My軸的垂線交l1l2于點N,Q,當NQ2時,求k的值.

查看答案和解析>>

同步練習冊答案