如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(6,0)和點B(2,0),與y軸交于點C(0,2
3
).⊙P經過A,B,C三點.
(1)求二次函數(shù)的表達式;
(2)求圓心P的坐標.
考點:圓的綜合題,兩點間的距離公式,待定系數(shù)法求二次函數(shù)解析式
專題:綜合題
分析:(1)只需運用待定系數(shù)法就可解決問題;
(2)連接PC、PB、PA,設點P的坐標為(x,y),根據(jù)兩點之間的距離公式,由PC=PB及PB=PA得到關于x、y的兩個方程,解這兩個方程即可解決問題.
解答:解:(1)∵二次函數(shù)y=ax2+bx+c的圖象經過點A(6,0)、點B(2,0)、點C(0,2
3
),
36a+6b+c=0
4a+2b+c=0
c=2
3
,
解得:
a=
3
6
b=-
4
3
3
c=2
3
,
∴二次函數(shù)的表達式為y=
3
6
x2-
4
3
3
x+2
3
;

(2)連接PC、PB、PA,如圖所示.
設點P的坐標為(x,y),
根據(jù)兩點之間的距離公式,
由PC=PB得:(x-0)2+(y-2
3
2=(x-2)2+(y-0)2,
整理得:x-
3
y+2=0.
由PB=PA得:(x-2)2+(y-0)2=(x-6)2+(y-0)2,
整理得:x=4.
把x=4代入x-
3
y+2=0得y=2
3
,
∴圓心P的坐標為(4,2
3
).
點評:本題主要考查了圓的性質、用待定系數(shù)法求二次函數(shù)的解析式、兩點之間的距離公式等知識,運用兩點之間的距離公式是解決第(2)小題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知
77
的整數(shù)部分為
 
,小數(shù)部分為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

要使代數(shù)式:
x+2
x-2
÷
x+2
x-4
有意義,則x滿足的條件是( 。
A、x≠2且x≠4
B、x≠2且x≠4
C、x≠-2且x≠4
D、x≠2且x≠-2且x≠4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如意旅行社為吸引市民組團到羅平九龍瀑布風景區(qū)旅游,推出如下收費標準:

某單位組織員工到此風景區(qū)旅游,共支付了27000元給如意旅行社,請問該單位這次共有多少員工來九龍瀑布風景區(qū)旅游?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:sin260°tan45°-(-
1
3
-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

旗桿的影子長6米,同時測得旗桿頂端到其影子頂端的距離是10米,如果此時附近的小樹影子長3米,那么小樹有
 
米高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,在同一平面直角坐標系中,一次函數(shù)y=x-4與二次函數(shù)y=-x2+2x+c的圖象交于點A(-1,m).
①求m,c的值;
②求二次函數(shù)圖象的對稱軸和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若拋物線y=x2-4x+c的頂點在x軸上,則c的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AC∥BD,求∠PAC,∠PBD,∠APB之間的關系.

查看答案和解析>>

同步練習冊答案