AB為⊙O的直徑,C為⊙O上一點(diǎn),AD和過C點(diǎn)的切線相交于D,和⊙O相交于E.如果AC平分∠DAB,
(1)求證:∠ADC=90°;
(2)若AB=2r,AD=數(shù)學(xué)公式r,求DE.

(1)證明:連接OC,
∵CD是⊙O的切線,
∴OC⊥CD,
∵OA=OC,
∴∠1=∠2,
∵∠2=∠3,∴∠1=∠3,
∴AD∥OC,
∴AD⊥CD,
即∠ADC=90°.

(2)解:連接BC,則∠ACB=90°,
由(1)得∠2=∠3,∠ACB=∠ADC=90°,
∴Rt△ABC∽R(shí)t△ACD,

即AC2=AB•AD=2r,
又∵CD2=AC2-AD2=,
且CD2=DE•AD,
∴DE=
分析:(1)連接OC,根據(jù)等腰三角形的性質(zhì)及平行線的判定定理求出AD∥OC,再根據(jù)切線的性質(zhì)解答即可.
(2)連接BC,根據(jù)圓周角定理可知∠ACB=90°,由(1)可求出Rt△ABC∽R(shí)t△ACD,根據(jù)相似三角形的性質(zhì)及勾股定理解答即可.
點(diǎn)評(píng):本題考查了圓的切線性質(zhì),及解直角三角形的知識(shí).運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,AC為弦,CD⊥AB于D.若AE=AC,BE交⊙O于點(diǎn)F,連接CF、DE.
求證:(1)AE2=AD•AB;
(2)∠ACF=∠AED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)AB為⊙O的直徑,PA為⊙O的切線,BC∥OP交⊙O于C,PO交⊙O于D,
(1)求證:PC為⊙O的切線;
(2)過點(diǎn)D作DE⊥AB于E,交AC于F,PO交AC于H,BD交AC于G,DF=FG,DF=5,CG=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東營(yíng))如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),若∠BAC=∠CAM,過點(diǎn)C作直線l垂直于射線AM,垂足為點(diǎn)D.
(1)試判斷CD與⊙O的位置關(guān)系,并說明理由;
(2)若直線l與AB的延長(zhǎng)線相交于點(diǎn)E,⊙O的半徑為3,并且∠CAB=30°,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑,弦CD⊥AB于點(diǎn)M,過點(diǎn)B作BE∥CD,交AC的延長(zhǎng)線于點(diǎn)E,連接BC.
(1)求證:BE為⊙O的切線.
(2)若CD=6,tan∠BCD=
12
,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB為⊙O的直徑,AC為⊙O的弦,AB=2,AC=
3
,D為圓上一點(diǎn),若AD=
2
,則∠DAC=
15°或75°
15°或75°

查看答案和解析>>

同步練習(xí)冊(cè)答案