【題目】如圖,已知正方形ABCD中,點E是BC上的一個動點,EF⊥AE交CD于點F,以AE,EF為邊作矩形AEFG,若AB=4,則點G到AD距離的最大值是________.
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣東省深圳市)荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校開展“書香校園”活動以來,受到同學們的廣泛關(guān)注,學校為了解全校學生課外閱讀的情況,隨機調(diào)查了部分學生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表.學生借閱圖書的次數(shù)統(tǒng)計表
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
______,______.
該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.
請計算扇形統(tǒng)計圖中“3次”所對應扇形的圓心角的度數(shù);
若該校共有2000名學生,根據(jù)調(diào)查結(jié)果,估計該校學生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象與x軸交于點A(﹣1,0),與y軸交于點B.且對稱軸為x=1.則下面的四個結(jié)論:
①當x>﹣1時,y>0;
②一元二次方程ax2+bx+c=0的兩根為x1=﹣1,x2=3;
③當y<0時,x<﹣1;
④拋物線上兩點(x1,y1),(x2,y2).當x1>x2>2時,y1>y2
其中正確結(jié)論的個數(shù)是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=12,點D是BC上一點,DE∥AC,DF∥AB,則△BED與△DFC的周長的和為( 。
A. 34B. 32C. 22D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組為測量如圖(①所示的一段古城墻的高度,設計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處。
(1)已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):
(2)請你設計一個測量這段古城墻高度的方案。
要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了豐富同學們的課外活動生活,開設了“第二課堂”.課堂設置了十幾個動項目,根據(jù)(1)班學生報名參加的項目,繪制成如下的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.
結(jié)合圖中信息,回答下列問題
(1)這個班學生人數(shù)有 人;
(2)補全條形統(tǒng)計圖,在扇形統(tǒng)計圖中其它項目所對的圓心角為 ;
(3)喜歡羽毛球的有3名女同學,其余為男同學,現(xiàn)要從中隨機抽取2名同學參加學校的羽毛球隊,用列表或樹狀圖求出所抽取的2名同學,恰好2人都是男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當點C與點M重合時AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com