【題目】如圖,在直角坐標系中的正方形ABCD邊長為4,正方形ABCD的中心為原點O.現做如下實驗:拋擲一枚均勻的正方體的骰子(六個面分別標有1至6這六個點數中的一個),每個面朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數作為直角坐標系中點P的坐標(第次的點數作為橫坐標,第二次的點數作為縱坐標)
(1)求點P落在正方形ABCD面上(含正方形內部和邊界)的概率;
(2)試將正方形ABCD平移整數個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,請指出平移方式;若不存在,請說明理由.
【答案】;(2)將正方形ABCD先向上移2個單位,再向右移1個單位;或將正方形ABCD先向上移1個單位,再向右移2個單位.
【解析】
(1)根據題意先列出圖標得出構成點P的所有情況數和點P落在正方形ABCD面上(含正方形內部和邊界)的情況數,然后根據概率公式即可得出答案;
(2)要使點P落在正方形ABCD面上的概率為,就得向上或向右整數個單位平移,所以,存在滿足要求的平移方式有兩種,將正方形ABCD先向上移2個單位,再向右移1個單位;或將正方形ABCD先向上移1個單位,再向右移2個單位.
(1)列表如下:
P的縱坐標 P的橫坐標 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
所以構成點P的坐標共有36種情況,其中點P的(1,1),(1,2),(2,1),(2,2)四種情況將落在正方形ABCD面上.
所以點P落在正方形ABCD面上的概率為=.
(2)因為要使點P落在正方形ABCD面上的概率為=>,所以只能將正方形ABCD向上或向右整數個單位平移,且使點P落在正方形面上的數目為12.
所以,存在滿足要求的平移方式有兩種,分別是:將正方形ABCD先向上移2個單位,再向右移1個單位(先向右再向上亦可);或將正方形ABCD先向上移1個單位,再向右移2個單位(先向右再向上亦可).
科目:初中數學 來源: 題型:
【題目】已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2013年12月2日1時30分,中國于西昌衛(wèi)星發(fā)射中心成功將“嫦娥三號”探測器送入軌道.2013年12月15日4時35分,“嫦娥三號”探測器與“玉兔號”月球車分離,“玉兔號”月球車順利駛抵月球表面,留下了中國在月球上的第一個足跡.“玉兔號”月球車一共在月球上工作了972天,約23000小時.將23000用科學記數法表示為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某市九年級學生學業(yè)考試體育成績,現從中隨機抽取部分學生的體育成績
進行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)統(tǒng)計如下:
根據上面提供的信息,回答下列問題:
(1)在統(tǒng)計表中,a的值為 ▲ ,b的值為 ▲ ,并將統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(2)甲同學說:“我的體育成績是此次抽樣調查所得數據的中位數. ”請問:甲同學的體育成績應在什么分數段內? ▲ (填相應分數段的字母)
(3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,在矩形ABCD中,AB=2cm,BC=6cm,點C和點M重合,點B,C(M),N在同一直線上若Rt△PMN不動,矩形ABCD沿MN所在直線以每秒1cm的速度向右移動,至點C與點N重合為止,設移動x秒后,矩形ABCD與△PMN重疊部分的面積為ycm2,則y與x的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數y=ax2+bx+4的圖象與x軸交于點A(4,0)和點D(﹣1,0),與y軸交于點C,過點C作BC平行于x軸交拋物線于點B,連接AC
(1)求這個二次函數的表達式;
(2)點M從點O出發(fā)以每秒2個單位長度的速度向點A運動;點N從點B同時出發(fā),以每秒1個單位長度的速度向點C運動,其中一個動點到達終點時,另一個動點也隨之停動,過點N作NQ垂直于BC交AC于點Q,連結MQ.
①求△AQM的面積S與運動時間t之間的函數關系式,寫出自變量的取值范圍;當t為何值時,S有最大值,并求出S的最大值;
②是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=BC,點O是AC的中點,點P是AC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.
(1)如圖1,請直接寫出線段OE與OF的數量關系;
(2)如圖2,當∠ABC=90°時,請判斷線段OE與OF之間的數量關系和位置關系,并說明理由
(3)若|CF﹣AE|=2,EF=2,當△POF為等腰三角形時,請直接寫出線段OP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AM是⊙O直徑,弦BC⊥AM,垂足為點N,弦CD交AM于點E,連按AB和BE.
(1)如圖1,若CD⊥AB,垂足為點F,求證:∠BED=2∠BAM;
(2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE=2CN;
(3)如圖3,AB=CD,BE:CD=4:7,AE=11,求EM的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在某一時刻測得1米長的竹竿豎直放置時影長1.2米,在同一時刻旗桿AB的影長不全落在水平地面上,有一部分落在樓房的墻上,測得落在地面上的影長BD=9.6米,留在墻上的影長CD=2米,則旗桿的高度AB為____米.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com