【題目】在△ABC中,AB=BC,點O是AC的中點,點P是AC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.
(1)如圖1,請直接寫出線段OE與OF的數(shù)量關(guān)系;
(2)如圖2,當∠ABC=90°時,請判斷線段OE與OF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由
(3)若|CF﹣AE|=2,EF=2,當△POF為等腰三角形時,請直接寫出線段OP的長.
【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由見解析;(3)OP的長為或.
【解析】(1)如圖1中,延長EO交CF于K,證明△AOE≌△COK,從而可得OE=OK,再根據(jù)直角三角形斜邊中線等于斜邊一半即可得OF=OE;
(2)如圖2中,延長EO交CF于K,由已知證明△ABE≌△BCF,△AOE≌△COK,繼而可證得△EFK是等腰直角三角形,由等腰直角三角形的性質(zhì)即可得OF⊥EK,OF=OE;
(3)分點P在AO上與CO上兩種情況分別畫圖進行解答即可得.
(1)如圖1中,延長EO交CF于K,
∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,
∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,
∵△EFK是直角三角形,∴OF=EK=OE;
(2)如圖2中,延長EO交CF于K,
∵∠ABC=∠AEB=∠CFB=90°,
∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,
∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,
∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,
∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;
(3)如圖3中,點P在線段AO上,延長EO交CF于K,作PH⊥OF于H,
∵|CF﹣AE|=2,EF=2,AE=CK,∴FK=2,
在Rt△EFK中,tan∠FEK=,∴∠FEK=30°,∠EKF=60°,
∴EK=2FK=4,OF=EK=2,
∵△OPF是等腰三角形,觀察圖形可知,只有OF=FP=2,
在Rt△PHF中,PH=PF=1,HF=,OH=2﹣,
∴OP=.
如圖4中,點P在線段OC上,當PO=PF時,∠POF=∠PFO=30°,
∴∠BOP=90°,
∴OP=OE=,
綜上所述:OP的長為或.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若S△ABC=9S△DHQ,則HQ= .
(2)如圖2,折疊△ABC使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥AC,求證:四邊形AEMF是菱形;
(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得△CMP和△HQP相似?若存在,求出PQ的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中的正方形ABCD邊長為4,正方形ABCD的中心為原點O.現(xiàn)做如下實驗:拋擲一枚均勻的正方體的骰子(六個面分別標有1至6這六個點數(shù)中的一個),每個面朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的點數(shù)作為直角坐標系中點P的坐標(第次的點數(shù)作為橫坐標,第二次的點數(shù)作為縱坐標)
(1)求點P落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率;
(2)試將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,請指出平移方式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生體質(zhì)情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應(yīng)為優(yōu)秀、良好、及格、不及格四個等級,統(tǒng)計員在將測試數(shù)據(jù)繪制成圖表時發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如圖圖表,請按正確數(shù)據(jù)解答下列各題:
學生體能測試成績各等次人數(shù)統(tǒng)計表
體能等級 | 調(diào)整前人數(shù) | 調(diào)整后人數(shù) |
優(yōu)秀 | 8 |
|
良好 | 16 |
|
及格 | 12 |
|
不及格 | 4 |
|
合計 | 40 |
|
(1)填寫統(tǒng)計表;
(2)根據(jù)調(diào)整后數(shù)據(jù),補全條形統(tǒng)計圖;
(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優(yōu)秀”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一種折疊式晾衣架.晾衣時,該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OC=OD=10分米,展開角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.當∠AOC=90°時,點A離地面的距離AM為_______分米;當OB從水平狀態(tài)旋轉(zhuǎn)到OB′(在CO延長線上)時,點E繞點F隨之旋轉(zhuǎn)至OB′上的點E′處,則B′E′﹣BE為_________分米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點C是半圓上一點,∠ABC的平分線交⊙O于E,D為BE延長線上一點,且DE=FE.
(1)求證:AD為⊙O切線;
(2)若AB=20,tan∠EBA=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,拋物線y=-x2-x-3交x軸于A、B兩點(點A在點B的左側(cè)),交y軸于點C.
(1)求直線AC的解析式;
(2)①點P是直線AC上方拋物線上的一個動點(不與點A、點C重合),過點P作PD⊥AC于點D,求PD的最大值;
②當線段PD的長度最大時,點Q從點P出發(fā),先以每秒1個單位長度的速度沿適當?shù)穆窂竭\動到y軸上的點M處,再沿MC以每秒個單位長度的速度運動到點C停止,當點Q在整個運動過程中用時最少時,求點M的坐標;
(3)如圖②,將△BOC沿直線BC平移,點B平移后的對應(yīng)點為點B',點O平移后的對應(yīng)點為點O',點C平移后的對應(yīng)點為點C',點S是坐標平面內(nèi)一點,若以A、C、O'、S為頂點的四邊形是菱形,求出所有符合條件的點O'的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com