精英家教網 > 初中數學 > 題目詳情
OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作B'點.求B'點的坐標;
(2)求折痕CM所在直線的解析式;
(3)作B'G∥AB交CM于點G,若拋物線y=x2+m過點G,求拋物線的解析式,并判斷以原點O為圓心,OG為半徑的圓與拋物線除交點G外,是否還有交點?若有,請直接寫出交點的坐標.

【答案】分析:(1)求B′的坐標就是求OB′的長,也就要知道CB′的長,而根據折疊的性質可知CB′=CB,而四邊形OCBA是矩形,可得出CB=OA,、,也就得出了CB′=OA,即可求出OB′的長,也就求出了B′的坐標;
(2)求CM所在直線的解析式,根據OC的長可得出C的坐標,關鍵是求M點的坐標,M的橫坐標與A的橫坐標相同,那么就要求出M的縱坐標即AM的長,(1)中已求得了OB′的長,也就求出了AB′的長,可用AM表示出MB也就是MB′的長,然后在直角三角形AB′M中用勾股定理求出AM的長,也就得出了M的坐標,然后用待定系數法求出CM所在直線的解析式.
(3)(1)中已經求得了OB′的長,也就是G的橫坐標,然后代入CM所在直線的解析式中求出G點的坐標,然后代入拋物線的解析式中求出m的值,即可得出拋物線的解析式.根據拋物線和圓的對稱性可得出拋物線與圓的另外一個交點就應該是G關于y軸的對稱點.
解答:解:(1)∵△CB'M≌△CBM
∴CB'=CB=OA=10
∴OB'==8
∴B'(8,0);

(2)設AM=n,則MB'=BM=6-n
AB'=10-8=2
∴n2+22=(6-n)2
解得n=
∴M(10,)、C(0,6)
設直線CM解析式為y=kx+b

解得
∴直線CM的解析式為y=-x+6;

(3)設G(8,a)
∴a=-×8+6=
∴G(8,
+m
∴m=-
∴y=x2-
除交點G外,另有交點為點G關于y軸的對稱點.
其坐標為(-8,).
點評:本題主要考查了折疊的性質,矩形的性質,一次函數的應用,以及用待定系數法求二次函數解析式等知識點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標;
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運動,運動的速度為每秒1個單位長度,設運動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數關系式;當t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應的時刻點M的坐標?
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形OABC是一張放在平面直角坐標系的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=15,OC=9,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作N點.
(1)求N點、M點的坐標;
(2)將拋物線y=x2-36向右平移a(0<a<10)個單位后,得到拋物線l,l經過點N,求拋物線l的解析式;
(3)①拋物線l的對稱軸上存在點P,使得P點到M、N兩點的距離之差最大,求P點的坐標;
②若點D是線段OC上的一個動點(不與O、C重合),過點D作DE∥OA交CN于E,設CD的長為m,△PDE的面積為S,求S與m之間的函數關系式,并說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸上,點C在y軸上,OA=10,OC=6.
(1)如圖,在AB上取一點M,使得△CBM沿CM翻折后,點B落在x軸上,記作B′點.求B′點的坐標;
(2)求折痕CM所在直線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的矩形紙片,點A在x軸上,點C在y軸上,且線段OA、OC(OA>OC)是方程x2-18x+80=0的兩根,將邊BC折疊,使點B落在邊OA上的點D處.
(1)求線段OA、OC的長;
(2)求直線CE與x軸交點P的坐標及折痕CE的長;
(3)是否存在過點D的直線l,使直線CE與x軸所圍成的三角形和直線l、直線CE與y軸所圍成精英家教網的三角形相似?如果存在,請直接寫出其解析式并畫出相應的直線;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標是
(0,5)
(0,5)

查看答案和解析>>

同步練習冊答案