實踐與探究:如圖,已知中,厘米,厘米,點為的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CA上由C點向A點運(yùn)動.
(1)用含有t的代數(shù)式表示CP
(2)若點Q的運(yùn)動速度與點P的運(yùn)動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
(3)若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,當(dāng)點Q的運(yùn)動速度為多少時,能夠使與全等?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴≥
只有當(dāng)a=b時,等號成立。
結(jié)論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,有最小值 ;
若m>0,只有當(dāng)m= 時,2有最小值 .
(2)如圖,已知直線L1:與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇泰州市海陵區(qū)八年級上期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
實踐與探究:如圖,已知中,厘米,厘米,點為的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運(yùn)動,同時,點Q在線段CA上由C點向A點運(yùn)動.
(1)用含有t的代數(shù)式表示CP
(2)若點Q的運(yùn)動速度與點P的運(yùn)動速度相等,經(jīng)過1秒后,與是否全等,請說明理由;
(3)若點Q的運(yùn)動速度與點P的運(yùn)動速度不相等,當(dāng)點Q的運(yùn)動速度為多少時,能夠使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰長涇片八年級下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題
實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴≥
只有當(dāng)a=b時,等號成立。
結(jié)論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時,a+b有最小值。 根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m= 時,有最小值 ;
若m>0,只有當(dāng)m= 時,2有最小值 .
(2)如圖,已知直線L1:與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當(dāng)線段CD最短時,點A、B、C、D圍成的四邊形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com