【題目】用反證法證明:在四邊形中,至少有一個內(nèi)角大于或等于90°,應(yīng)先假設(shè)( )

A. 四邊形中每一個內(nèi)角都小于90° B. 四邊形中最多有一個內(nèi)角不小于90°

C. 四邊形中每一個內(nèi)角都大于90° D. 四邊形中有一個內(nèi)角大于90°

【答案】A

【解析】分析:至少有一個角不小于90°的反面是每個角都小于90°,據(jù)此即可假設(shè).

詳解:用反證法證明:在四邊形中,至少有一個角不小于90°,
應(yīng)先假設(shè):四邊形中的每個角都小于90°.
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果(3ambm+n)327a9b3,那么m·n的值為 ( )

A. 6 B. 6 C. 1 D. l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格中.點(diǎn)A,B,D均在格點(diǎn)上,點(diǎn)E、F分別為線段BC、DB上的動點(diǎn),且BE=DF.

1)如圖①,當(dāng)BE=時,計算AE+AF的值等于 ;

2)當(dāng)AE+AF取得最小值時,請?jiān)谌鐖D②所示的網(wǎng)格中,用無刻度的直尺,畫出線段AE,AF,并簡要說明點(diǎn)E和點(diǎn)F的位置如何找到的(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書超過200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1=﹣1是關(guān)于x的方程x2+mx﹣5=0的一個根,則方程的另一個根x2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x-2)2+3的對稱軸是( )

A.直線x=3B.直線x=-3C.直線x=-2D.直線x=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b、c是實(shí)數(shù),點(diǎn)A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是bc(用“>”或“<”號填空)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,給正五邊形的頂點(diǎn)依次編號為1,2,3,4,5.若從某一頂點(diǎn)開始,沿正五邊形的邊順時針方向行走,頂點(diǎn)編號的數(shù)字是幾,就走幾個邊長,則稱這種走法為一次“移位”. 如:小宇在編號為3的頂點(diǎn)上時,那么他應(yīng)走3個邊長,即從3→4→5→1為第一次“移位”,這時他到達(dá)編號為1的頂點(diǎn);然后從1→2為第二次“移位”.若小宇從編號為2的頂點(diǎn)開始,那么第二次“移位”后他所處的頂點(diǎn)的編號為. 第181次“移位”后,則他所處頂點(diǎn)的編號是.

查看答案和解析>>

同步練習(xí)冊答案