【答案】
分析:(1)由于∠OAB=90°,OA=2,AB=2
,所以O(shè)B=4;
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/czsx/web/STSource/20131103103308435860057/SYS201311031033084358600028_DA/1.png">=
,所以
=
,OM=
.
(2)由(1)得:OM=
,即BM=
.由于DB∥OA,易證
=
=
,故DB=1,D(1,2
).故過OD的直線所對(duì)應(yīng)的函數(shù)關(guān)系式是y=2
x.
(3)依題意:當(dāng)0<t≤
時(shí),E在OD邊上,分別過E,P作EF⊥OA,PN⊥OA,垂足分別為F和N,由于tan∠PON=
=
,故∠PON=60°,OP=t,故ON=
t,PN=
t,直線OD所對(duì)應(yīng)的函數(shù)關(guān)系式是y=2
x,
設(shè)E(n,2
)易證得△APN∽△AEF,故
=
,故n=
,由此,S
△OAE=
OA•EF=
×2×2
×
,
∴S=
(0<t≤
);
當(dāng)
<t<4時(shí),點(diǎn)E在BD邊上,此時(shí),S
梯形OABD=S
△ABE+S
梯形OAED,
由于DB∥OA,易證:∴△EPB∽△APO,
∴
=
,
∴
=
,BE=
,
可分別求出三角形的值.
解答:解:(1)∵∠OAB=90°,OA=2,AB=2
,
∴OB=4,
∵
=
,
∴
=
,
∴OM=
.
(2)由(1)得:OM=
,
∴BM=
,
∵DB∥OA,易證
=
=
,
∴DB=1,D(1,2
),
∴過OD的直線所對(duì)應(yīng)的函數(shù)關(guān)系式是y=2
x.
(3)依題意:當(dāng)0<t≤
時(shí),E在OD邊上,
分別過E,P作EF⊥OA,PN⊥OA,垂足分別為F和N,
∵tan∠PON=
=
,∴∠PON=60°,
OP=t.∴ON=
t,PN=
t,
∵直線OD所對(duì)應(yīng)的函數(shù)關(guān)系式是y=2
,
設(shè)E(n,2
)易證得△APN∽△AEF,
∴
=
,
∴
=
,
整理得:
=
,
∴8n-2nt=2t-nt,
∴8n-nt=2t,n(8-t)=2t,
∴n=
.
由此,S
△OAE=
OA•EF=
×2×2
×
,
∴S=
(0<t≤
),
當(dāng)
<t<4時(shí),點(diǎn)E在BD邊上,
此時(shí),S
梯形OABD=S
△ABE+S
梯形OAED,
∵DB∥OA,
易證:△EPB∽△APO,
∴
=
,
∴
=
,
BE=
,
S
△ABE=
BE•AB=
×
×2
=
×2
=
=
,
∴S=
(1+2)×2
-
×2
=3
-
×2
=-
+5
,
綜上所述:S=
.
(3)解法2:①∵∠AOB=90°,OA=2,AB=2
,
易求得:∠ABO=30°,∴OB=4.
解法2:分別過E,P作EF⊥OA,PN⊥OA,垂足分別為F和N,
由①得,∠OBA=30°,
∵OP=t,
∴ON=
t,PN=
t,
即:P(
t,
t),又(2,0),
設(shè)經(jīng)過A,P的直線所對(duì)應(yīng)的函數(shù)關(guān)系式是y=kx+b,
則
,
解得:k=
,b=
,
∴經(jīng)過A,P的直線所對(duì)應(yīng)的函數(shù)關(guān)系式是y=
x+
.
依題意:當(dāng)0<t≤
時(shí),在OD邊上,
∴E(n,2
n),在直線AP上,
∴-
+
=2
n,
整理得:
-
=2n,
∴n=
,
∴S=
(0
),
當(dāng)
<t<4時(shí),點(diǎn)E在BD上,此時(shí),點(diǎn)E坐標(biāo)是(n,2
),因?yàn)镋在直線AP上,
∴-
+
=2
,
整理得:
+
=2∴8n-nt=2t,
∴n=
,
BE=2-n=2-
=
,
∴S=
(1+2)×2
-
×2
=3
-
×2
=-
+5
,
綜上所述:S=
.
點(diǎn)評(píng):本題比較復(fù)雜,難度較大,把一次函數(shù)的解析式與解直角三角形,三角形相似的性質(zhì)結(jié)合起來,鍛煉了學(xué)生對(duì)所學(xué)知識(shí)的應(yīng)用能力.