【題目】如圖,已知ABCD中,DE是∠ADC的角平分線,交BC于點(diǎn)E

(1)求證:CD=CE
(2)若BE=CE , 求證:AEDE.

【答案】
(1)證明:∵ 四邊形ABCD是平行四邊形,
ADBC
∴ ∠ADE=∠DEC.
DE是∠ADC的角平分線,
∴ ∠ADE=∠CDE ,
∴ ∠CDE=∠DEC ,
CD=CE
(2)證明:∵ 四邊形ABCD是平行四邊形,
AB=DC.
CD=CE , BE=CE
AB=BE,
∴ ∠BAE=∠BEA.
ADBC ,
∴ ∠DAE=∠BEA.
∴ ∠DAE=∠BAE= BAD.
ABDC
∴ ∠BAD+∠ADC=180°,
∵ ∠ADE= ADC ,
∴ ∠DAE+∠ADE= (∠BAD+∠ADC)=90°,
∴ ∠AED=90°,
AEDE.
【解析】(1)先依據(jù)角平分線的定義和平行線的性質(zhì)可證明∠CDE=∠DEC,最后,依據(jù)等角對(duì)等邊的性質(zhì)進(jìn)行證明即可;
(2)先證明BE=AB,可得到∠BAE=∠BEA,然后可證明∠BAE=∠DAE,從而可證明∠EAD+∠ADE=(∠BAD+∠ADC)=90°,然后可證明∠AED=90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠1與∠2是同旁內(nèi)角,且∠1=60°,則∠2( 。
A.為120°
B.為60°
C.為120°或60°
D.大小不定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ACDB中,AB為直徑,ACBC=1:2,點(diǎn)D的中點(diǎn),BECD垂足為E

(1)求∠BCE的度數(shù);

(2)求證:DCE的中點(diǎn);

(3)連接OEBC于點(diǎn)F,若AB,求OE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】陸地上最高處是珠穆朗瑪峰的峰頂,高出海平面約8844m,記為+8844m;陸地上最低處是死海,低于海平面約415m,記為______m,珠穆朗瑪峰比死海高______m;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年3月,我市某中學(xué)舉行了“愛(ài)我中國(guó)朗誦比賽”活動(dòng),根據(jù)學(xué)生的成績(jī)劃分為A、B、C、D四個(gè)等級(jí),并繪制了不完整的兩種統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,回答下列問(wèn)題:

(1)參加朗誦比賽的學(xué)生共有   人,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)扇形統(tǒng)計(jì)圖中,m=   ,n=   ;C等級(jí)對(duì)應(yīng)扇形有圓心角為   度;

(3)學(xué)校欲從獲A等級(jí)的學(xué)生中隨機(jī)選取2人,參加市舉辦的朗誦比賽,請(qǐng)利用列表法或樹(shù)形圖法,求獲A等級(jí)的小明參加市朗誦比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等腰三角形的兩邊長(zhǎng)分別為 4 8,則周長(zhǎng)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,AD是角平分線,△ADE是等邊三角形,下列結(jié)論:①AD⊥BC;②EF=FD;③BE=BD.其中正確結(jié)論的個(gè)數(shù)為( )

A.3
B.2
C.1
D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲 乙兩人在相同的條件下各射靶10次,射擊成績(jī)的平均數(shù)都是8環(huán),甲射擊成績(jī)的方差是1.2,乙射擊成績(jī)的方差是1.8.下列說(shuō)法中不一定正確的是( 。
A.甲、乙射擊成績(jī)的眾數(shù)相同
B.甲射擊成績(jī)比乙穩(wěn)定
C.乙射擊成績(jī)的波動(dòng)比甲較大
D.甲、乙射中的總環(huán)數(shù)相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0)兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過(guò)點(diǎn)E作直線l⊥x軸于H,交拋物線于點(diǎn)M,過(guò)點(diǎn)C作CF⊥l于F.

(1)求拋物線解析式;

(2)如圖2,當(dāng)點(diǎn)F恰好在拋物線上時(shí)(與點(diǎn)M重合)

①求點(diǎn)F的坐標(biāo);

②求線段OD的長(zhǎng);

③試探究在直線l上,是否存在點(diǎn)G,使∠EDG=45°?若存在,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,連接CM,若△COD∽△CFM,請(qǐng)直接寫(xiě)出線段OD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案