已知:矩形ABCD(如圖),AB=5cm,BC=4cm.畫它的水平放置的直觀圖.
(畫圖工具不限,不要求寫畫法,但要標(biāo)出頂點字母)

解:如圖,四邊形A′B′C′D′即為求作的矩形ABCD的直觀圖.

分析:(1)以A為坐標(biāo)原點,以AB所在直線為x軸,AD所在直線為y軸建立直角坐標(biāo)系;
(2)建立斜坐標(biāo)系:畫出對應(yīng)的x′軸、y′軸,交于原點O′(也就是點A′),且∠y′O′x′=45°;
(3)在x′軸上截取O′B′=AB,在y′軸上截取O′D′=AD;
(4)以D′為圓心、AB長為半徑作弧;以B′為圓心、AD長為半徑作弧,兩弧交于點C′;
(5)連接D′C′、B′C′,四邊形O′B′C′D′(即A′B′C′D′)即為矩形ABCD的水平放置直觀圖.
點評:此題主要考查的是用斜二測法作直觀圖的方法,牢記作圖步驟是解答此類題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:矩形ABCD,對角線AC、BD相交于點O.
(1)利用圖中的向量表示:
BC
+
CD
=
 

(2)利用圖中的向量表示:
AO
-
AD
=
 
;
(3)如果|
AB
|=5
,|
BC
|=12
,則|
BO
|
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在矩形ABCD中,AB=3,點E在BC上且∠BAE=30°,延長BC到點F使CF=BE,連接DF.
(1)判斷四邊形AEFD的形狀,并說明理由;
(2)求DF的長度;
(3)若四邊形AEFD是菱形,求菱形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,若△CDN的面積與△CMN的面積比為1:3,求
MNDN
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),已知,矩形ABCD的邊AD=3,對角線長為5,將矩形ABCD置于直角坐標(biāo)系內(nèi),點C與原點O重合,且反比例函數(shù)的圖象的一個分支位于第一象限.
①求圖(1)中,點A的坐標(biāo)是多少?
②若矩形ABCD從圖(1)的位置開始沿x軸的正方向移動,每秒移動1個單位,1秒后點A剛好落在反比例函數(shù)的圖象上,如圖(2),求反比例函數(shù)的表達(dá)式.
③矩形ABCD繼續(xù)向x軸的正方向移動,AB、AD與反比例函數(shù)圖象分別交于P、Q兩點,如圖(3),設(shè)移動總時間為t(1<t<5),分別寫出△PBC的面積S1、△QDC的面積S2與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S2=
107
S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:矩形ABCD中,對角線AC與BD交于點O,CE平分∠BCD,交AB于點E,∠OCE=15°,求∠BEO的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案