如圖22-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).

1.如圖22-2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;

2.若三角尺GEF旋轉(zhuǎn)到如圖22-3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

 

【答案】

 

1.BM=FN.                                      

證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF.又∵∠BOM=∠FON      ∴ △OBM≌△OFN .    ∴ BM=FN.

2.BM=FN仍然成立.                              

證明:∵△GEF是等腰直角三角形,四邊形ABCD是正方形,

∴∠DBA=∠GFE=45°,OB=OF.

∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,   ∴ △OBM≌△OFN .      

∴ BM=FN. 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有直徑為2的半圓O和一塊等腰直角三角板
(1)將三角板如圖1放置,銳角頂點P在圓上,斜邊經(jīng)過點B,一條直角邊交圓于點Q,則BQ的長為
2
2
;
(2)將三角板如圖2放置,銳角頂點P在圓上,斜邊經(jīng)過點B,一條直角邊的延長線交圓于Q,則BQ的長為
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,△ABC中,AB=AC=2,BC=2
2
,∠A=90°.取一塊含45°角的直角三角尺,將直角頂點放在斜邊BC邊的中點O處,一條直角邊過A點(如圖1).三角尺繞O點順時針方向旋轉(zhuǎn),使90°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點E,F(xiàn)(如圖2).設(shè)BE=x,CF=y.
(1)探究:在圖2中,線段AE與CF有怎樣的大小關(guān)系?證明你的結(jié)論;
(2)求在上述旋轉(zhuǎn)過程中y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)若將直角三角尺45°角的頂點放在斜邊BC邊的中點O處,一條直角邊過A點(如圖3).三角尺繞O點順時針方向旋轉(zhuǎn),使45°角的兩邊與Rt△ABC的兩邊AB,AC分別相交于點E,F(xiàn)(如圖4).在三角尺繞O點旋轉(zhuǎn)的過程中,△OEF是否能成為等腰三角形?若能,直接寫出△OEF為等腰三角形時x的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖22-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).

1.如圖22-2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;

2.若三角尺GEF旋轉(zhuǎn)到如圖22-3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教新課標版中考綜合模擬數(shù)學(xué)卷(13) 題型:解答題

如圖22-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉(zhuǎn).
【小題1】如圖22-2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
【小題2】若三角尺GEF旋轉(zhuǎn)到如圖22-3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案