分析 連接CD,由三角形ABC為等邊三角形得到AB=BC,再由BP=AB,得到BC=BP,利用SAS即可得證,利用SSS得到三角形ACD與三角形BCD全等,利用全等三角形對(duì)應(yīng)角相等得到∠ACD=∠BCD=30°,再由(1)的結(jié)論得到全等三角形對(duì)應(yīng)角相等,即可求出所求角的度數(shù).
解答 解:連接CD,
∵△ABC為等邊三角形,
∴AB=BC,
∵BP=AB,
∴BP=BC,
在△BDP和△BDC中,
$\left\{\begin{array}{l}{BP=BC}\\{∠DBP=∠DBC}\\{BD=BD}\end{array}\right.$,
∴△BDP≌△BDC(SAS),
在△ACD和△BCD中,
$\left\{\begin{array}{l}{AC=BC}\\{DC=DC}\\{AD=BD}\end{array}\right.$,
∴△ACD≌△BCD(SSS),
∴∠ACD=∠BCD=30°,
∵△BDP≌△BDC,
∴∠BPD=∠BCD=30°.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com